98 research outputs found

    Modulated contact frequencies at gene-rich loci support a statistical helix model for mammalian chromatin organization

    Get PDF
    International audienceABSTRACT: BACKGROUND: Despite its critical role for mammalian gene regulation, the basic structural landscape of chromatin in living cells remains largely unknown within chromosomal territories below the megabase scale. RESULTS: Here, using the 3C-qPCR method, we investigate contact frequencies at high resolution within the interphase chromatin at several mouse loci. We find that, at several gene-rich loci, contact frequencies undergo a periodical modulation (every 90-100 kb) that affects chromatin dynamics over large genomic distances (few hundred kb). Interestingly, this modulation appears to be conserved in human cells and bioinformatic analyses of locus-specific, long-range cis-interactions suggest that it may underlie the dynamics of a significant number of gene-rich domains in mammals, thus contributing to genome evolution. Finally, using an original model derived from polymer physics, we show that this modulation can be understood as a fundamental helix shape that chromatin tends to adopt in gene-rich domains when no significant locus-specific interaction takes place. CONCLUSIONS: Altogether, our work unveils a fundamental aspect of chromatin dynamics in mammals and contributes to a better understanding of genome organization within chromosomal territories

    Imprinting at the PLAGL1 domain is contained within a 70-kb CTCF/cohesin-mediated non-allelic chromatin loop

    Get PDF
    Paternal duplications of chromosome 6q24, a region that contains the imprinted PLAGL1 and HYMAI transcripts, are associated with transient neonatal diabetes mellitus. A common feature of imprinted genes is that they tend to cluster together, presumably as a result of sharing common cis-acting regulatory elements. To determine the extent of this imprinted cluster in human and mouse, we have undertaken a systematic analysis of allelic expression and DNA methylation of the genes mapping within an similar to 1.4-Mb region flanking PLAGL1/Plagl1. We confirm that all nine neighbouring genes are biallelically expressed in both species. In human we identify two novel paternally expressed PLAGL1 coding transcripts that originate from unique promoter regions. Chromatin immunoprecipitation for CTCF and the cohesin subunits RAD21 and SMC3 reveals evolutionarily conserved binding sites within unmethylated regions similar to 5 kb downstream of the PLAGL1 differentially methylated region and within the PLAGL1 3' untranslated region (UTR). Higher-order chromatin looping occurs between these regions in both expressing and non-expressing tissues, forming a non-allelic chromatin loop around the PLAGL1/Plagl1 gene. In placenta and brain tissues, we identify an additional interaction between the PLAGL1 P3/P4 promoters and the unmethylated element downstream of the PLAGL1 differentially methylated region that we propose facilitates imprinted expression of these alternative isoforms

    The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus

    Get PDF
    Background: Genomic imprinting is the epigenetic marking of genes that results in parent-of-origin monoallelic expression. Most imprinted domains are associated with differentially DNA methylated regions (DMRs) that originate in the gametes, and are maintained in somatic tissues after fertilization. This allelic methylation profile is associated with a plethora of histone tail modifications that orchestrates higher order chromatin interactions. The mouse chromosome 15 imprinted cluster contains multiple brain-specific maternally expressed transcripts including Ago2, Chrac1, Trappc9 and Kcnk9 and a paternally expressed gene, Peg13. The promoter of Peg13 is methylated on the maternal allele and is the sole DMR within the locus. To determine the extent of imprinting within the human orthologous region on chromosome 8q24, a region associated with autosomal recessive intellectual disability, Birk-Barel mental retardation and dysmorphism syndrome, we have undertaken a systematic analysis of allelic expression and DNA methylation of genes mapping within an approximately 2 Mb region around TRAPPC9. Results: Utilizing allele-specific RT-PCR, bisulphite sequencing, chromatin immunoprecipitation and chromosome conformation capture (3C) we show the reciprocal expression of the novel, paternally expressed, PEG13 non-coding RNA and maternally expressed KCNK9 genes in brain, and the biallelic expression of flanking transcripts in a range of tissues. We identify a tandem-repeat region overlapping the PEG13 transcript that is methylated on the maternal allele, which binds CTCF-cohesin in chromatin immunoprecipitation experiments and possesses enhancer-blocker activity. Using 3C, we identify mutually exclusive approximately 58 and 500 kb chromatin loops in adult frontal cortex between a novel brain-specific enhancer, marked by H3K4me1 and H3K27ac, with the KCNK9 and PEG13 promoters which we propose regulates brain-specific expression. Conclusions: We have characterised the molecular mechanism responsible for reciprocal allelic expression of the PEG13 and KCNK9 transcripts. Therefore, our observations may have important implications for identifying the cause of intellectual disabilities associated with the 8q24 locu

    Hypermethylation of the alternative AWT1 promoter in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels

    Get PDF
    Background: Wilms tumor 1 (WT1) is over-expressed in numerous cancers with respect to normal cells, and has either a tumor suppressor or oncogenic role depending on cellular context. This gene is associated with numerous alternatively spliced transcripts, which initiate from two different unique first exons within the WT1 and the alternative (A) WT1 promoter intervals. Within the hematological system, WT1 expression is restricted to CD34+/ CD38- cells and is undetectable after differentiation. Detectable expression of this gene is an excellent marker for minimal residual disease in acute myeloid leukemia (AML), but the underlying epigenetic alterations are unknown. Methods: To determine the changes in the underlying epigenetic landscape responsible for this expression, we characterized expression, DNA methylation and histone modification profiles in 28 hematological cancer cell lines and confirmed the methylation signature in 356 cytogenetically well-characterized primary hematological malignancies. Results: Despite high expression of WT1 and AWT1 transcripts in AML-derived cell lines, we observe robust hypermethylation of the AWT1 promoter and an epigenetic switch from a permissive to repressive chromatin structure between normal cells and AML cell lines. Subsequent methylation analysis in our primary leukemia and lymphoma cohort revealed that the epigenetic signature identified in cell lines is specific to myeloid-lineage malignancies, irrespective of underlying mutational status or translocation. In addition to being a highly specific marker for AML diagnosis (positive predictive value 100%; sensitivity 86.1%; negative predictive value 89.4%), we show that AWT1 hypermethylation also discriminates patients that relapse from those achieving complete remission after hematopoietic stem cell transplantation, with similar efficiency to WT1 expression profiling. Conclusions: We describe a methylation signature of the AWT1 promoter CpG island that is a promising marker for classifying myeloid-derived leukemias. In addition AWT1 hypermethylation is ideally suited to monitor the recurrence of disease during remission in patients undergoing allogeneic stem cell transfer

    The tumoral A genotype of the MGMT rs34180180 single-nucleotide polymorphism in aggressive gliomas is associated with shorter patients' survival

    Get PDF
    Malignant gliomas are the most common primary brain tumors. Grade III and IV gliomas harboring wild-type IDH1/2 are the most aggressive. In addition to surgery and radiotherapy, concomitant and adjuvant chemotherapy with temozolomide (TMZ) significantly improves overall survival (OS). The methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter is predictive of TMZ response and a prognostic marker of cancer outcome. However, the promoter regions the methylation of which correlates best with survival in aggressive glioma and whether the promoter methylation status predictive value could be refined or improved by other MGMT-associated molecular markers are not precisely known. In a cohort of 87 malignant gliomas treated with radiotherapy and TMZ-based chemotherapy, we retrospectively determined the MGMT promoter methylation status, genotyped single nucleotide polymorphisms (SNPs) in the promoter region and quantified MGMT mRNA expression level. Each of these variables was correlated with each other and with the patients' OS. We found that methylation of the CpG sites within MGMT exon 1 best correlated with OS and MGMT expression levels, and confirmed MGMT methylation as a stronger independent prognostic factor compared to MGMT transcription levels. Our main finding is that the presence of only the A allele at the rs34180180 SNP in the tumor was significantly associated with shorter OS, independently of the MGMT methylation status. In conclusion, in the clinic, rs34180180 SNP genotyping could improve the prognostic value of the MGMT promoter methylation assay in patients with aggressive glioma treated with TMZ.ARC -Fondation ARC pour la Recherche sur le Cancer(EML20120904843

    Recommendations for a nomenclature system for reporting methylation aberrations in imprinted domains

    Get PDF
    The analysis of DNA methylation has become routine in the pipeline for diagnosis of imprinting disorders, with many publications reporting aberrant methylation associated with imprinted differentially methylated regions (DMRs). However, comparisons between these studies are routinely hampered by the lack of consistency in reporting sites of methylation evaluated. To avoid confusion surrounding nomenclature, special care is needed to communicate results accurately, especially between scientists and other health care professionals. Within the European Network for Human Congenital Imprinting Disorders we have discussed these issues and designed a nomenclature for naming imprinted DMRs as well as for reporting methylation values. We apply these recommendations for imprinted DMRs that are commonly assayed in clinical laboratories and show how they support standardized database submission. The recommendations are in line with existing recommendations, most importantly the Human Genome Variation Society nomenclature, and should facilitate accurate reporting and data exchange among laboratories and thereby help to avoid future confusion

    Human Oocyte-derived Methylation Differences Persist In The Placenta Revealing Widespread Transient Imprinting

    Get PDF
    Thousands of regions in gametes have opposing methylation profiles that are largely resolved during the post-fertilization epigenetic reprogramming. However some specific sequences associated with imprinted loci survive this demethylation process. Here we present the data describing the fate of germline-derived methylation in humans. With the exception of a few known paternally methylated germline differentially methylated regions (DMRs) associated with known imprinted domains, we demonstrate that sperm-derived methylation is reprogrammed by the blastocyst stage of development. In contrast a large number of oocyte-derived methylation differences survive to the blastocyst stage and uniquely persist as transiently methylated DMRs only in the placenta. Furthermore, we demonstrate that this phenomenon is exclusive to primates, since no placenta-specific maternal methylation was observed in mouse. Utilizing single cell RNA-seq datasets from human preimplantation embryos we show that following embryonic genome activation the maternally methylated transient DMRs can orchestrate imprinted expression. However despite showing widespread imprinted expression of genes in placenta, allele-specific transcriptional profiling revealed that not all placenta-specific DMRs coordinate imprinted expression and that this maternal methylation may be absent in a minority of samples, suggestive of polymorphic imprinted methylation

    Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA

    Get PDF
    Parental genomic imprinting at the Igf2/H19 locus is controlled by a methylation-sensitive CTCF insulator that prevents the access of downstream enhancers to the Igf2 gene on the maternal chromosome. However, on the paternal chromosome, it remains unclear whether long-range interactions with the enhancers are restricted to the Igf2 promoters or whether they encompass the entire gene body. Here, using the quantitative chromosome conformation capture assay, we show that, in the mouse liver, the endodermal enhancers have low contact frequencies with the Igf2 promoters but display, on the paternal chromosome, strong interactions with the intragenic differentially methylated regions 1 and 2. Interestingly, we found that enhancers also interact with a so-far poorly characterized intergenic region of the locus that produces a novel imprinted long non-coding transcript that we named the paternally expressed Igf2/H19 intergenic transcript (PIHit) RNA. PIHit is expressed exclusively from the paternal chromosome, contains a novel discrete differentially methylated region in a highly conserved sequence and, surprisingly, does not require an intact ICR/H19 gene region for its imprinting. Altogether, our data reveal a novel imprinted domain in the Igf2/H19 locus and lead us to propose a model for chromatin folding of this locus on the paternal chromosome

    H19 Antisense RNA Can Up-Regulate Igf2 Transcription by Activation of a Novel Promoter in Mouse Myoblasts

    Get PDF
    It was recently shown that a long non-coding RNA (lncRNA), that we named the 91H RNA (i.e. antisense H19 transcript), is overexpressed in human breast tumours and contributes in trans to the expression of the Insulin-like Growth Factor 2 (IGF2) gene on the paternal chromosome. Our preliminary experiments suggested that an H19 antisense transcript having a similar function may also be conserved in the mouse. In the present work, we further characterise the mouse 91H RNA and, using a genetic complementation approach in H19 KO myoblast cells, we show that ectopic expression of the mouse 91H RNA can up-regulate Igf2 expression in trans despite almost complete unmethylation of the Imprinting-Control Region (ICR). We then demonstrate that this activation occurs at the transcriptional level by activation of a previously unknown Igf2 promoter which displays, in mouse tissues, a preferential mesodermic expression (Pm promoter). Finally, our experiments indicate that a large excess of the H19 transcript can counteract 91H-mediated Igf2 activation. Our work contributes, in conjunction with other recent findings, to open new horizons to our understanding of Igf2 gene regulation and functions of the 91H/H19 RNAs in normal and pathological conditions

    Biallelic non-productive enhancer-promoter interaction precedes imprinted expression of<i>Kcnk9</i>during mouse neural commitment

    Get PDF
    AbstractHow constitutive allelic methylation at imprinting control regions (ICRs) interacts with other levels of regulation to drive timely parental allele-specific expression along large imprinted domains remains partially understood. To gain insight into the regulation of thePeg13-Kcnk9domain, an imprinted domain with important brain functions, during neural commitment, we performed an integrative analysis of the epigenetic, transcriptomic and cis-spatial organisation in an allele-specific manner in a mouse stem cell-based model of corticogenesis that recapitulates the control of imprinted gene expression during neurodevelopment. We evidence that despite an allelic higher-order chromatin structure associated with the paternally CTCF-boundPeg13ICR, the enhancer-Kcnk9promoter contacts can occur on both alleles, although they are only productive on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side, and suggests a more nuanced role for allelic CTCF binding at some ICRs.</jats:p
    • …
    corecore