105 research outputs found
RF characterisation of new coatings for future circular collider beam screens
For the future high energy colliders being under the design at this moment, the choice of a low surface impedance beam screen coating material has become of fundamental importance to ensure sufficiently low beam impedance and consequently guaranteed stable operation at high currents. We have studied the use of high-temperature superconducting coated conductors as possible coating materials for the beam screen of the FCC-hh. In addition, amorphous carbon coating and laser-based surface treatment techniques are effective surface treatments to lower the secondary electron yield and minimise the electron cloud build-up. We have developed and adapted different experimental setups based on resonating structures at frequencies below 10 GHz to study the response of these coatings and their modified surfaces under the influence of RF fields and DC magnetic fields up to 9¿T. Taking the FCC-hh as a reference, we will show that the surface resistance for REBCO-CCs is much lower than that of Cu. Further we show that the additional surface modifications can be optimised to minimise their impact on the surface impedance. Results from selected coatings will be presented.Work supported by CERN under Grants FCC-GOV-CC-0210 (KE4945/ATS), FCC-GOV-CC-0209 (KE4946/ATS) and FCC-GOV-CC0208 (KE4947/ATS). ICMAB funding through RTI2018-095853-B-C21 SuMaTe from MICINN and co-financing by the European Regional Development Fund, 2017-SGR 1519 from Generalitat de Catalunya, and COST Action NANOCO-HYBRI (CA16218) from EU, the Center of Excellence award Severo Ochoa CEX2019-000917-S. UPC funding through the Unit of Excellence Maria de Maetzu MDM2016-0600. N. Tagdulang and A. Romanov acknowledge MSCA-COFUND-2016-754397 for the PhD grant.Peer ReviewedPostprint (published version
Evaluation of the nonlinear surface resistance of REBCO coated conductors for their use in the FCC-hh beam screen
To assess the feasibility of using high-temperature superconductors for the beam screens of future circular colliders, we have undertaken a study of the power dependence of the microwave surface resistance in state-of-the-art REBCO coated conductors at about 8 GHz and 50 K. We have employed a dielectric resonator to produce radio-frequency (RF) electromagnetic fields on the surface of the coated conductors having amplitudes similar to those generated by proton bunches circulating in the vacuum chamber of the proposed future circular collider Hadron-Hadron (FCC-hh) at CERN We show that surface resistances in REBCO coated conductors without artificial pinning centers are more affected by a RF magnetic field than those containing nano-inclusions. Despite that, at 8 GHz, 50 K, and 9 T, most REBCO coated conductors studied outperform copper in terms of surface resistance, with the best sample having a 2.3 mΩ surface resistance while being subject to an RF field 2.5 times stronger than that in the FCC-hh. We also extrapolate the measured data to 16 T and 1 GHz, the actual FCC-hh dipole magnetic field, and the mid-beam frequency spectrum, demonstrating the possibility of lowering the surface resistance of the vacuum chamber by up to two orders of magnitude compared to copper. Further, we discuss the correlation between the time structure of the electromagnetic fields provided by vector network analyzers compared to the proton bunches' time structure in the collider and present the effect of low alternating magnetic fields on vortex displacement and the possibility of demagnetization of superconducting samples.The authors acknowledge the support and samples provided by Bruker HTS GmbH, Fujikura Ltd, SuNAM CO Ltd SuperOx, SuperPower Inc. and Theva Dünnschichttechnik GmbH. This work was supported by CERN under Grant Nos. FCC-GOV-CC-0072/KE3358, FCC-GOV-CC-0153/KE4106 and FCC-GOV-CC-0208/KE4947/ATS. UPC funding was also provided through the Unit of Excellence María de Maeztu MDM2016-0600. N Tagdulang and A Romanov acknowledge MSCA-COFUND-2016-754397 for the PhD Grant. ICMAB authors acknowledge RTI2018-095853-B-C21 SuMaTe from MICINN and co-financing by the European Regional Development Fund; 2017-SGR 1519 from Generalitat de Catalunya and COST Action NANOCO-HYBRI (CA16218) from EU, the Center of Excellence award Severo Ochoa CEX2019-000917-S.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
The Role of Humoral Innate Immunity in Hepatitis C Virus Infection
Infection with Hepatitis C Virus (HCV) causes chronic disease in approximately 80% of cases, resulting in chronic inflammation and cirrhosis. Current treatments are not completely effective, and a vaccine has yet to be developed. Spontaneous resolution of infection is associated with effective host adaptive immunity to HCV, including production of both HCV-specific T cells and neutralizing antibodies. However, the supporting role of soluble innate factors in protection against HCV is less well understood. The innate immune system provides an immediate line of defense against infections, triggering inflammation and playing a critical role in activating adaptive immunity. Innate immunity comprises both cellular and humoral components, the humoral arm consisting of pattern recognition molecules such as complement C1q, collectins and ficolins. These molecules activate the complement cascade, neutralize pathogens, and recruit antigen presenting cells. Here we review the current understanding of anti-viral components of the humoral innate immune system that play a similar role to antibodies, describing their role in immunity to HCV and their potential contribution to HCV pathogenesis
Recommended from our members
Continuation vs Discontinuation of Renin-Angiotensin System Inhibitors Before Major Noncardiac Surgery
ImportanceBefore surgery, the best strategy for managing patients who are taking renin-angiotensin system inhibitors (RASIs) (angiotensin-converting enzyme inhibitors or angiotensin receptor blockers) is unknown. The lack of evidence leads to conflicting guidelines.ObjectiveTo evaluate whether a continuation strategy vs a discontinuation strategy of RASIs before major noncardiac surgery results in decreased complications at 28 days after surgery.Design, setting, and participantsRandomized clinical trial that included patients who were being treated with a RASI for at least 3 months and were scheduled to undergo a major noncardiac surgery between January 2018 and April 2023 at 40 hospitals in France.InterventionPatients were randomized to continue use of RASIs (n = 1107) until the day of surgery or to discontinue use of RASIs 48 hours prior to surgery (ie, they would take the last dose 3 days before surgery) (n = 1115).Main outcomes and measuresThe primary outcome was a composite of all-cause mortality and major postoperative complications within 28 days after surgery. The key secondary outcomes were episodes of hypotension during surgery, acute kidney injury, postoperative organ failure, and length of stay in the hospital and intensive care unit during the 28 days after surgery.ResultsOf the 2222 patients (mean age, 67 years [SD, 10 years]; 65% were male), 46% were being treated with angiotensin-converting enzyme inhibitors at baseline and 54% were being treated with angiotensin receptor blockers. The rate of all-cause mortality and major postoperative complications was 22% (245 of 1115 patients) in the RASI discontinuation group and 22% (247 of 1107 patients) in the RASI continuation group (risk ratio, 1.02 [95% CI, 0.87-1.19]; P = .85). Episodes of hypotension during surgery occurred in 41% of the patients in the RASI discontinuation group and in 54% of the patients in the RASI continuation group (risk ratio, 1.31 [95% CI, 1.19-1.44]). There were no other differences in the trial outcomes.Conclusions and relevanceAmong patients who underwent major noncardiac surgery, a continuation strategy of RASIs before surgery was not associated with a higher rate of postoperative complications than a discontinuation strategy.Trial registrationClinicalTrials.gov Identifier: NCT03374449
The Impact of Brand Quality on Shareholder Wealth
This study examines the impact of brand quality on three components of shareholder wealth: stock returns, systematic risk, and idiosyncratic risk. The study finds that brand quality enhances shareholder wealth insofar as unanticipated changes in brand quality are positively associated with stock returns and negatively related to changes in idiosyncratic risk. However, unanticipated changes in brand quality can also erode shareholder wealth because they have a positive association with changes in systematic risk. The study introduces a contingency theory view to the marketing-finance interface by analyzing the moderating role of two factors that are widely followed by investors. The results show an unanticipated increase (decrease) in current-period earnings enhances (depletes) the positive impact of unanticipated changes in brand quality on stock returns and mitigates (enhances) their deleterious effects on changes in systematic risk. Similarly, brand quality is more valuable for firms facing increasing competition (i.e., unanticipated decreases in industry concentration). The results are robust to endogeneity concerns and across alternative models. The authors conclude by discussing the nuanced implications of their findings for shareholder wealth, reporting brand quality to investors, and its use in employee evaluation
- …
