101 research outputs found

    The Role of Hypothalamic Tri-Iodothyronine Availability in Seasonal Regulation of Energy Balance and Body Weight

    Get PDF
    Seasonal cycles of body weight provide a natural model system to understand the central control of energy balance. Studies of such cycles in Siberian hamsters suggest that a change in the hypothalamic availability of thyroid hormone is the key determinant of annual weight regulation. Uptake of thyroid hormone into the hypothalamus from the peripheral circulation occurs largely through a specific monocarboxylate transporter expressed by tanycyte cells lining the third ventricle. Tanycytes are the principal brain cell type expressing type II and type III deiodinases, so they control the local concentrations of T4, T3, and inactive metabolites. Type III deiodinase mRNA in tanycytes is photoperiodically upregulated in short photoperiod. This would be expected to reduce the availability of T3 in the hypothalamus by promoting the production of inactive metabolites such as rT3. Experimental microimplantation of T3 directly into the hypothalamus during short-days promotes a long-day phenotype by increasing food intake and body weight without affecting the peripheral thyroid axis. Thus, thyroid hormone exerts anabolic actions within the brain that play a key role in the seasonal regulation of body weight. Understanding the precise actions of thyroid hormone in the brain may identify novel targets for long-term pharmacological manipulation of body weight

    The Value of Comparative Animal Research : Krogh’s Principle Facilitates Scientific Discoveries

    Get PDF
    There are no conflicts of interest to declare. This paper developed from the 2016 Early Career Impact Award from the Federation of Associations in Behavioral & Brain Sciences to TJS. TJS has received funding from The Leverhulme Trust. FJPE is in receipt of funding from the BBSRC (BB/M001555/1). The National Institutes of Health has funded RDF (NS 034950, NS093277, NIMH 087930), AGO (HD079573, IOS-1354760) and AMK (HD081959). BAA is an Arnold O. Beckman postdoctoral fellow.Peer reviewedPostprin

    Gerald Lincoln: a man for all seasons

    Get PDF
    Gerald Anthony Lincoln died after a short illness on 15 July 2020 at the age of 75 years. Gerald was Emeritus Professor of Biological Timing at Edinburgh University and a Fellow of the Royal Society of Edinburgh. He was an outstanding scientist and naturalist who was a seminal figure in developing our understanding of the neuroendocrine mechanisms underlying seasonal rhythmicity. This review considers his life and some of his major scientific contributions to our understanding of seasonality, photoperiodism and circannual rhythmicity. It is based on a presentation at the online 2nd annual seasonality symposium (2 October 2020) that was supported financially by the Journal of Neuroendocrinology

    Entrainment of the Melatonin Rhythms in Early Postnatal Lambs and Their Mothers

    Full text link
    Although the developing sheep can produce an appropriately timed melatonin rhythm as early as 1 week after birth, it is not known whether the lamb is able to adjust its melatonin rhythm to a change in daylength. The ability of the young lamb to entrain its pattern of melatonin secretion to a new photoperiod was determined in the present study. Eight female lambs and their mothers were raised in long days (LD 16:8) beginning 2 weeks post partum. At 7 weeks of age, the time of lights-off was advanced 8 hr, the short-day photoperiod then being LD 8:16; the time of lights-on remained unchanged. Concentrations of melatonin were measured in blood samples collected hourly on days - 1, 0, 2, 4, 6, and 13 relative to the light change. On day 0, all mothers and daughters had advanced the onset of melatonin secretion by at least 1 hr, and by day 13, 12 of 16 had completely entrained to the new photoperiod. The rate of entrainment among individuals varied; the mean rate for lambs and mothers did not differ. This study provides evidence that the melatonin-rhythm-generating system matures shortly after birth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68290/2/10.1177_074873048900400405.pd

    Hypothalamic ventricular ependymal thyroid hormone deiodinases are an important element of circannual timing in the siberian hamster (Phodopus sungorus)

    Get PDF
    Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response

    Effect of adeno-associated virus (AAV)-mediated overexpression of PEPCK-M (Pck2) on Clenbuterol-induced muscle growth

    Get PDF
    We previously identified PEPCK-M (encoded by the Pck2 gene) to be highly up-regulated in skeletal muscle of pigs treated with Ractopamine, an anabolic beta-adrenergic receptor agonist. To determine whether PEPCK-M had a causative role in modulating the skeletal muscle growth response to Ractopamine, we used adeno-associated virus 1 (AAV1) to over-express Pck2 (AAV-Pck2) in murine skeletal muscle. A contralateral limb design was employed, such that each mouse served as its own control (injected with a GFP-only expressing AAV1, labelled AAV-GFP). Daily injections of Clenbuterol (1 mg/kg for 21 days) or vehicle control were also carried out to assess the effects of AAV-Pck2 overexpression on the anabolic response to a beta-adrenergic agonist. AAV-Pck2 overexpression in leg muscles of male C57BL6/J mice for 4 weeks (6–10 weeks of age) increased Pck2 mRNA (~100-fold), protein (not quantifiable) and enzyme activity (~3-fold). There was a trend (p = 0.0798) for AAV-Pck2 overexpression to reduce TA muscle weights, but there was no significant effect on muscle fibre diameters or myosin heavy chain isoform (MyHC) mRNA expression. When skeletal muscle growth was induced by daily administration of Clenbuterol (for 21 days), overexpression of AAV-Pck2 had no effect on the growth response, nor did it alter the expression of Phosphoserine Aminotransferase-1 (Psat1) or Asparagine Synthetase (Asns) mRNA or the Clenbuterol-induced decreases in MyHC IIa and IIx mRNA expression (p = 0.0065 and p = 0.0267 respectively). However AAV-Pck2 overexpression reduced TA muscle weights (p = 0.0434), particularly in the Control (vehicle treated) mice (p = 0.059 for AAV x Clenbuterol interaction) and increased the expression of Seryl-tRNA Synthetase (Sars) mRNA (p = 0.0477). Hence, contrary to the original hypothesis, AAV-Pck2 overexpression reduced TA muscle weights and did not mimic or alter the muscle hypertrophic effects of the beta-adrenergic agonist, Clenbuterol

    Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures

    Get PDF
    Tanycytes play multiple roles in hypothalamic functions, including sensing peripheral nutrients and metabolic hormones, regulating neurosecretion and mediating seasonal cycles of reproduction and metabolic physiology. This last function reflects the expression of TSH receptors in tanycytes, which detect photoperiod-regulated changes in TSH secretion from the neighbouring pars tuberalis. The present overall aim was to determine the signal transduction pathway by which TSH signals in tanycytes. Expression of the TSH receptor in tanycytes of 10-day-old Sprague Dawley rats was observed by in situ hybridisation. Primary ependymal cell cultures prepared from 10-day-old rats were found by immunohistochemistry to express vimentin but not GFAP and by PCR to express mRNA for Dio2, Gpr50, Darpp-32 and Tsh receptors that are characteristic of tanycytes. Treatment of primary tanycyte/ependymal cultures with TSH (100 IU/l) increased cAMP as assessed by ELISA and induced a cAMP-independent increase in the phosphorylation of ERK1/2 as assessed by western blot analysis. Furthermore, TSH (100 IU/l) stimulated a 2.17-fold increase in Dio2 mRNA expression. We conclude that TSH signal transduction in cultured tanycytes signals via Gαs to increase cAMP and via an alternative G protein to increase phosphorylation of ERK1/2

    Interscapular and perivascular brown adipose tissue respond differently to a short-term high-fat diet

    Get PDF
    Brown adipose tissue (BAT) function may depend on its anatomical location and developmental origin. Interscapular BAT (iBAT) regulates acute macronutrient metabolism, whilst perivascular BAT (PVAT) regulates vascular function. Although phenotypically similar, whether these depots respond differently to acute nutrient excess is unclear. Given their distinct anatomical locations and developmental origins and we hypothesised that iBAT and PVAT would respond differently to brief period of nutrient excess. Sprague-Dawley rats aged 12 weeks (n=12) were fed either a standard (10% fat, n=6) or high fat diet (HFD: 45% fat, n=6) for 72h and housed at thermoneutrality. Following an assessment of whole body physiology, fat was collected from both depots for analysis of gene expression and the proteome. HFD consumption for 72h induced rapid weight gain (c. 2.6%) and reduced serum non-esterified fatty acids (NEFA) with no change in either total adipose or depot mass. In iBAT, an upregulation of genes involved in insulin signalling and lipid metabolism was accompanied by enrichment of lipid-related processes and functions, plus glucagon and peroxisome proliferator-activated receptor (PPAR) signalling pathways. In PVAT, HFD induced a pronounced down-regulation of multiple metabolic pathways which was accompanied with increased abundance of proteins involved in apoptosis (e.g. Hdgf and Ywaq) and toll-like receptor signalling (Ube2n). There was also an enrichment of DNA-related processes and functions (e.g. nucleosome assembly and histone exchange) and RNA degradation and cell adhesion pathways. In conclusion, we show that iBAT and PVAT elicit divergent responses to short-term nutrient excess highlighting early adaptations in these depots before changes in fat mass

    Antibody mediated targeting of the FGFR1c isoform increases glucose uptake in white and brown adipose tissue in male mice

    Get PDF
    The increased prevalence of obesity and its cardiometabolic implications demonstrates the imperative to identify novel therapeutic targets able to effect meaningful metabolic changes in this population. Antibody-mediated targeting of fibroblast growth factor receptor 1c isoform (FGFR1c) has been shown to ameliorate hyperglycaemia and protect from diet- and genetically-induced obesity in rodents and non-human primates. However, it is currently unknown which tissue(s) contribute to this glucose lowering effect. Thus, to elucidate this effect we treated euglycaemic mice with H7, a monoclonal antibody which selectively targets the FGFR1c isoform, and employed whole body positron emission computed tomography with a glucose tracer (18F-flurodeoxyglucose). Treatment with H7 increased basal glucose uptake in white and brown adipose tissues (WAT and BAT respectively), the brain and liver, but reduced it in the quadricep muscles. Consequentially, blood glucose was significantly reduced in response to treatment. Under insulin-stimulated conditions, the effects of H7 were maintained in WAT, BAT, liver and muscle. Treatment with H7 decreased triglyceride content and increased adipose triglyceride lipase content in white adipose tissue, whilst increasing activation of acetyl coenzyme A carboxylase, suggesting futile cycling of triglycerides, albeit favouring net hydrolysis. We demonstrated, in vitro, this is a direct effect of treatment in adipose tissue as basal cellular respiration and glucose uptake were increased in response to treatment. Taken together, these data suggest that antibody-mediated targeting of FGFR1c exerts its powerful glucose-lowering efficacy primarily due to increased glucose uptake in adipose tissue
    corecore