1,406 research outputs found

    Sewage sludge heavy metal analysis and agricultural prospects for Fiji

    Get PDF
    Insoluble residues produced in Waste Water Treatment Plants (WWTP) as by products are known as sewage sludge (SS). Land application of SS, particularly in agricultural lands, is becoming an alternative disposal method in Fiji. However, currently there is no legislative framework governing its use. SS together with its high nutrient and organic matter contents, constitutes some undesired pollutants such as heavy metals, which may limit its extensive use. The focus of this study therefore was to determine the total concentrations of Pb, Zn, Cd, Cu, Cr, Ni and Mn in the SS produced at the Kinoya WWTP (Fiji) and in the non-fertile soil amended with the SS at 20, 40, 60, 80% application rates and in the control (100% Soil). The bioavailable heavy metals were also determined as it depicts the true extent of metal contamination. The treatment mixtures were then used to cultivate cabbage plants in which the total heavy metal uptake was investigated. Total Zn (695.6 mg/kg) was present in the highest amounts in the 100% SS (control), followed by Pb (370.9 mg/kg), Mn (35.0 mg/kg), Cu (65.5 mg/kg), Cr (20.5 mg/kg) and finally Cd (13.5 mg/kg) and hence a similar trend was seen in all treatment mixtures. The potential mobility of sludgeborne heavy metals can be classified as Ni > Cu > Cd > Zn > Mn > Cr > Pb. Total metal uptake in plant leaves and stems showed only the bioavailable metals Cu, Cd, Zn and Mn, with maximum uptake occurring in the leaves. Ni, despite being highly mobile was not detected, due to minute concentrations in the SS treatments. Optimum growth occurred in the 20 and 40% SS treatments. However maximum Cu and Mn uptake occurred in the 40% SS treatment thereby making the 20% treatment the most feasible. Furthermore the total and bioavailable metal concentrations observed were within the safe and permitted limits of the EEC and USEPA legislations

    Landfill gas generation and methane recovery at Naboro landfill, Fiji Islands: a case study from a developing Pacific Island country

    Get PDF
    The Naboro landfill in Suva, the capital city of Fiji Islands, is a sanitary engineered landfill, consisting of a compacted clay protective liner and leachate collection system. The waste is selectively placed, compacted and then covered with soil. The landfill was commisioned in 2005 and is currently receiving an average of 70,000 tonnes of waste annually. The municipal solid waste deposited in the landfill undergoes anaerobic decomposition and the methane gas generated escapes into the atmosphere, adding to the national greenhouse gas inventory. Currently there are no methane recovery and biogas utilisation technology in place or methane flaring at the Naboro landfill site. A feasibility study was carried out recently and based on the model output and field experiments, it was noted that methane recovery and utilisation could be a viable option although there could be some challenges associated with it. According to the waste chaacterization data supplied by the landfill operator it was noted that 83% is house hold waste, 11% is garden waste and 5% is food waste and 1% construction and demolition waste. Based on the type of waste deposited and the tropical weather condition it was calculated using the model that approximately 800 m3/h of methane is generated in 2016. Figure below shows the landfill gas generated at the Naboro landfill from stage 1 to stage 4. Due to tropical humid weather condition and waste rich is organic waste that decomposes rapidly results in the yearly average emission of 74% of total methane generated despite methane recovery via vertical wells installed at the end of each stage. The emission equates to 47,000 tons of CO2 equivalent per year despite methane recovery. The emission can be reduced if the methane generated could be extracted using vertical recovery wells half way through each stage rather than at the end of each stage and as a consequence a slight decrease in yearly average emissions of 41,000 tons of CO2 equivalent were noted. Another approach is to lay horizontal wells as the waste is compacted in the active cell and this could increase the efficiency of landfill gas extraction. The model result indicate that the use of horizontal wells reduces the yearly average emission to 55% of total methane generated. This highlights the fact that approximately 45 % of the methane generated could be harnessed and could be utilized to generate energy using gas engines. However a large fraction of the methane generated is still lost as emission to the atmopshere and this can be further reduced by enhancing the oxdising capacity of the soil cover. The methane oxidation in cover soil was measured to be 10.3% by measuring the CH4-CO2 ratios in the static chamber measurements. The experimental value is close to the IPCC default value of 10%. The paper will discuss other challenges associated with methane recovery at Naboro landfill particularly with landfill gas management

    Does Vascular Calcification Accelerate Inflammation?: A Substudy of the dal-PLAQUE Trial.

    Get PDF
    BACKGROUND: Atherosclerosis is an inflammatory condition with calcification apparent late in the disease process. The extent and progression of coronary calcification predict cardiovascular events. Relatively little is known about noncoronary vascular calcification. OBJECTIVES: This study investigated noncoronary vascular calcification and its influence on changes in vascular inflammation. METHODS: A total of 130 participants in the dal-PLAQUE (Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging) study underwent fluorodeoxyglucose positron emission tomography/computed tomography at entry and at 6 months. Calcification of the ascending aorta, arch, carotid, and coronary arteries was quantified. Cardiovascular risk factors were related to arterial calcification. The influences of baseline calcification and drug therapy (dalcetrapib vs. placebo) on progression of calcification were determined. Finally, baseline calcification was related to changes in vascular inflammation. RESULTS: Age >65 years old was consistently associated with higher baseline calcium scores. Arch calcification trended to progress more in those with calcification at baseline (p = 0.055). There were no significant differences between progression of vascular calcification with dalcetrapib compared to that with placebo. Average carotid target-to-background ratio indexes declined over 6 months if carotid calcium was absent (single hottest slice [p = 0.037], mean of maximum target-to-background ratio [p = 0.010], and mean most diseased segment [p < 0.001]), but did not significantly change if calcification was present at baseline. CONCLUSIONS: Across multiple arterial regions, higher age is consistently associated with higher calcium scores. The presence of vascular calcification at baseline is associated with progressive calcification; in the carotid arteries, calcification appears to influence vascular inflammation. Dalcetrapib therapy did not affect vascular calcification.The study was supported by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Some editorial assistance was provided by Prime Healthcare and was funded by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Partial support is acknowledged from NIH/NHLBI R01 HL071021 (ZAF). We thank Elisabetta Damonte for helping with statistical analyses.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jacc.2015.10.05

    Atmospheric abundance and global emissions of perfluorocarbons CF4, C2F6 and C3F8 since 1800 inferred from ice core, firn, air archive and in situ measurements

    Get PDF
    Perfluorocarbons (PFCs) are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production and semiconductor manufacture. They have been targeted for emission controls under the United Nations Framework Convention on Climate Change. Here we present the first continuous records of the atmospheric abundance of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from 1800 to 2014. The records are derived from high-precision measurements of PFCs in air extracted from polar firn or ice at six sites (DE08, DE08-2, DSSW20K, EDML, NEEM and South Pole) and air archive tanks and atmospheric air sampled from both hemispheres. We take account of the age characteristics of the firn and ice core air samples and demonstrate excellent consistency between the ice core, firn and atmospheric measurements. We present an inversion for global emissions from 1900 to 2014. We also formulate the inversion to directly infer emission factors for PFC emissions due to aluminium production prior to the 1980s. We show that 19th century atmospheric levels, before significant anthropogenic influence, were stable at 34.1 ± 0.3 ppt for CF4 and below detection limits of 0.002 and 0.01 ppt for C2F6 and C3F8, respectively. We find a significant peak in CF4 and C2F6 emissions around 1940, most likely due to the high demand for aluminium during World War II, for example for construction of aircraft, but these emissions were nevertheless much lower than in recent years. The PFC emission factors for aluminium production in the early 20th century were significantly higher than today but have decreased since then due to improvements and better control of the smelting process. Mitigation efforts have led to decreases in emissions from peaks in 1980 (CF4) or early-to-mid-2000s (C2F6 and C3F8) despite the continued increase in global aluminium production; however, these decreases in emissions appear to have recently halted. We see a temporary reduction of around 15 % in CF4 emissions in 2009, presumably associated with the impact of the global financial crisis on aluminium and semiconductor production

    Biology of Francisella tularensis Subspecies holarctica Live Vaccine Strain in the Tick Vector Dermacentor variabilis

    Get PDF
    Background: The c-proteobacterium Francisella tularensis is the etiologic agent of seasonal tick-transmitted tularemia epizootics in rodents and rabbits and of incidental infections in humans. The biology of F. tularensis in its tick vectors has not been fully described, particularly with respect to its quanta and duration of colonization, tissue dissemination, and transovarial transmission. A systematic study of the colonization of Dermacentor variabilis by the F. tularensis subsp. holarctica live vaccine strain (LVS) was undertaken to better understand whether D. variabilis may serve as an inter-epizootic reservoir for F. tularensis. Methodology/Principal Findings: Colony-reared larva, nymph, and adult D. variabilis were artificially fed LVS via glass capillary tubes fitted over the tick mouthparts, and the level of colonization determined by microbial culture. Larvae and nymphs were initially colonized with 8.860.8610 1 and 1.160.03610 3 CFU/tick, respectively. Post-molting, a significant increase in colonization of both molted nymphs and adults occurred, and LVS persisted in 42 % of molted adult ticks at 126 days post-capillary tube feeding. In adult ticks, LVS initially colonized the gut, disseminated to hemolymph and salivary glands by 21 days, and persisted up to 165 days. LVS was detected in the salivary secretions of adult ticks after four days post intra-hemocoelic inoculation, and LVS recovered from salivary gland was infectious to mice with an infectious dose 50 % of 3 CFU. LVS in gravid female ticks colonized via the intra-hemocoelic route disseminated to the ovaries and then t

    BiCyCLE NMES—neuromuscular electrical stimulation in the perioperative treatment of sarcopenia and myosteatosis in advanced rectal cancer patients: design and methodology of a phase II randomised controlled trial

    Get PDF
    Abstract: Background: Colorectal cancer is associated with secondary sarcopenia (muscle loss) and myosteatosis (fatty infiltration of muscle) and patients who exhibit these host characteristics have poorer outcomes following surgery. Furthermore, patients, who undergo curative advanced rectal cancer surgery such as pelvic exenteration, are at risk of skeletal muscle loss due to immobility, malnutrition and a post-surgical catabolic state. Neuromuscular electrical stimulation (NMES) may be a feasible adjunctive treatment to help ameliorate these adverse side-effects. Hence, the purpose of this study is to investigate NMES as an adjunctive pre- and post-operative treatment for rectal cancer patients in the radical pelvic surgery setting and to provide early indicative evidence of efficacy in relation to key health outcomes. Method: In a phase II, double-blind, randomised controlled study, 58 patients will be recruited and randomised (1:1) to either a treatment (NMES plus standard care) or placebo (sham-NMES plus standard care) group. The intervention will begin 2 weeks pre-operatively and continue for 8 weeks after exenterative surgery. The primary outcome will be change in mean skeletal muscle attenuation, a surrogate marker of myosteatosis. Sarcopenia, quality of life, inflammatory status and cancer specific outcomes will also be assessed. Discussion: This phase II randomised controlled trial will provide important preliminary evidence of the potential for this adjunctive treatment. It will provide guidance on subsequent development of phase 3 studies on the clinical benefit of NMES for rectal cancer patients in the radical pelvic surgery setting. Trial registration: Protocol version 6.0; 05/06/20. ClinicalTrials.gov NCT04065984. Registered on 22 August 2019; recruiting

    A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity

    Get PDF
    Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H2O2 and O2−, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses
    corecore