99 research outputs found

    Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography

    Get PDF
    Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N2-fixing root nodules on diverse and globally distributed angiosperms in the “actinorhizal” symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%–98.9% identity of 16S rRNA genes). The extent of gene deletion, duplication, and acquisition is in concert with the biogeographic history of the symbioses and host plant speciation. Host plant isolation favored genome contraction, whereas host plant diversification favored genome expansion. The results support the idea that major genome expansions as well as reductions can occur in facultative symbiotic soil bacteria as they respond to new environments in the context of their symbioses

    Unravelling the Gut Microbiota of Cow’s Milk–Allergic Infants, Their Mothers, and Their Grandmothers

    Get PDF
    The gut microbiome constitutes a highly complex ecosystem in which bacteria are the most prominent components. Around 70% of primary colonization of the gut microbiota is maternal in origin [1], and the first 1000 days of life are crucial for the development of the intestinal microbiota [2]. Despite its early formation, the gut microbiota is highly dynamic and dependent on host-associated confounding factors such as age, diet, antibiotics, lifestyle, and environmental conditions [3,4]. Alterations in gut microbiota have been described in people with different types of allergy, including cow’s milk allergy (CMA)This work was supported by Instituto de Salud Carlos III (PI17/01087) and Fundación Sociedad Española de Alergia e Inmunología Clínica (FSEAIC_2016). It was cofunded by the European Regional Development Fund “Investing in your future” for the Thematic Network and Co-operative Research Centers ARADyAL RD16/0006/0015 and RD16/0006/0026. It was additionally supported by the Ministry of Science, Innovation in Spain (PCI2018-092930), cofunded by the European program ERA HDHL - Nutrition & the Epigenome, project Dietary Intervention in Food Allergy: Microbiome, Epigenetic and Metabolomic interactions (DIFAMEM). DR and EZ-V acknowledge funding from the Spanish Ministry of Science, Innovation and Universities (RTI2018-095166-B-I00). CU acknowledges funding from the Spanish Ministry of Economy (SAF2017-90083-R). TCB-T thanks CEUInternational Doctoral School (CEINDO) for his fellowship

    Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy

    Get PDF
    HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model

    SIGffRid: A tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many programs have been developed to identify transcription factor binding sites. However, most of them are not able to infer two-word motifs with variable spacer lengths. This case is encountered for RNA polymerase Sigma (<it>σ</it>) Factor Binding Sites (SFBSs) usually composed of two boxes, called -35 and -10 in reference to the transcription initiation point. Our goal is to design an algorithm detecting SFBS by using combinational and statistical constraints deduced from biological observations.</p> <p>Results</p> <p>We describe a new approach to identify SFBSs by comparing two related bacterial genomes. The method, named SIGffRid (SIGma Factor binding sites Finder using R'MES to select Input Data), performs a simultaneous analysis of pairs of promoter regions of orthologous genes. SIGffRid uses a prior identification of over-represented patterns in whole genomes as selection criteria for potential -35 and -10 boxes. These patterns are then grouped using pairs of short seeds (of which one is possibly gapped), allowing a variable-length spacer between them. Next, the motifs are extended guided by statistical considerations, a feature that ensures a selection of motifs with statistically relevant properties. We applied our method to the pair of related bacterial genomes of <it>Streptomyces coelicolor </it>and <it>Streptomyces avermitilis</it>. Cross-check with the well-defined SFBSs of the SigR regulon in <it>S. coelicolor </it>is detailed, validating the algorithm. SFBSs for HrdB and BldN were also found; and the results suggested some new targets for these <it>σ </it>factors. In addition, consensus motifs for BldD and new SFBSs binding sites were defined, overlapping previously proposed consensuses. Relevant tests were carried out also on bacteria with moderate GC content (i.e. <it>Escherichia coli</it>/<it>Salmonella typhimurium </it>and <it>Bacillus subtilis</it>/<it>Bacillus licheniformis </it>pairs). Motifs of house-keeping <it>σ </it>factors were found as well as other SFBSs such as that of SigW in <it>Bacillus </it>strains.</p> <p>Conclusion</p> <p>We demonstrate that our approach combining statistical and biological criteria was successful to predict SFBSs. The method versatility autorizes the recognition of other kinds of two-box regulatory sites.</p

    SIGffRid: A tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many programs have been developed to identify transcription factor binding sites. However, most of them are not able to infer two-word motifs with variable spacer lengths. This case is encountered for RNA polymerase Sigma (<it>σ</it>) Factor Binding Sites (SFBSs) usually composed of two boxes, called -35 and -10 in reference to the transcription initiation point. Our goal is to design an algorithm detecting SFBS by using combinational and statistical constraints deduced from biological observations.</p> <p>Results</p> <p>We describe a new approach to identify SFBSs by comparing two related bacterial genomes. The method, named SIGffRid (SIGma Factor binding sites Finder using R'MES to select Input Data), performs a simultaneous analysis of pairs of promoter regions of orthologous genes. SIGffRid uses a prior identification of over-represented patterns in whole genomes as selection criteria for potential -35 and -10 boxes. These patterns are then grouped using pairs of short seeds (of which one is possibly gapped), allowing a variable-length spacer between them. Next, the motifs are extended guided by statistical considerations, a feature that ensures a selection of motifs with statistically relevant properties. We applied our method to the pair of related bacterial genomes of <it>Streptomyces coelicolor </it>and <it>Streptomyces avermitilis</it>. Cross-check with the well-defined SFBSs of the SigR regulon in <it>S. coelicolor </it>is detailed, validating the algorithm. SFBSs for HrdB and BldN were also found; and the results suggested some new targets for these <it>σ </it>factors. In addition, consensus motifs for BldD and new SFBSs binding sites were defined, overlapping previously proposed consensuses. Relevant tests were carried out also on bacteria with moderate GC content (i.e. <it>Escherichia coli</it>/<it>Salmonella typhimurium </it>and <it>Bacillus subtilis</it>/<it>Bacillus licheniformis </it>pairs). Motifs of house-keeping <it>σ </it>factors were found as well as other SFBSs such as that of SigW in <it>Bacillus </it>strains.</p> <p>Conclusion</p> <p>We demonstrate that our approach combining statistical and biological criteria was successful to predict SFBSs. The method versatility autorizes the recognition of other kinds of two-box regulatory sites.</p

    Genetic Control of Canine Leishmaniasis: Genome-Wide Association Study and Genomic Selection Analysis

    Get PDF
    Background: the current disease model for leishmaniasis suggests that only a proportion of infected individuals develop clinical disease, while others are asymptomatically infected due to immune control of infection. The factors that determine whether individuals progress to clinical disease following Leishmania infection are unclear, although previous studies suggest a role for host genetics. Our hypothesis was that canine leishmaniasis is a complex disease with multiple loci responsible for the progression of the disease from Leishmania infection. Methodology/Principal Findings: genome-wide association and genomic selection approaches were applied to a population-based case-control dataset of 219 dogs from a single breed (Boxer) genotyped for ~170,000 SNPs. Firstly, we aimed to identify individual disease loci; secondly, we quantified the genetic component of the observed phenotypic variance; and thirdly, we tested whether genome-wide SNP data could accurately predict the disease. Conclusions/Significance: we estimated that a substantial proportion of the genome is affecting the trait and that its heritability could be as high as 60%. Using the genome-wide association approach, the strongest associations were on chromosomes 1, 4 and 20, although none of these were statistically significant at a genome-wide level and after correcting for genetic stratification and lifestyle. Amongst these associations, chromosome 4: 61.2-76.9 Mb maps to a locus that has previously been associated with host susceptibility to human and murine leishmaniasis, and genomic selection estimated markers in this region to have the greatest effect on the phenotype. We therefore propose these regions as candidates for replication studies. An important finding of this study was the significant predictive value from using the genomic information. We found that the phenotype could be predicted with an accuracy of ~0.29 in new samples and that the affection status was correctly predicted in 60% of dogs, significantly higher than expected by chance, and with satisfactory sensitivity-specificity values (AUC = 0.63)

    Atypical AT Skew in Firmicute Genomes Results from Selection and Not from Mutation

    Get PDF
    The second parity rule states that, if there is no bias in mutation or selection, then within each strand of DNA complementary bases are present at approximately equal frequencies. In bacteria, however, there is commonly an excess of G (over C) and, to a lesser extent, T (over A) in the replicatory leading strand. The low G+C Firmicutes, such as Staphylococcus aureus, are unusual in displaying an excess of A over T on the leading strand. As mutation has been established as a major force in the generation of such skews across various bacterial taxa, this anomaly has been assumed to reflect unusual mutation biases in Firmicute genomes. Here we show that this is not the case and that mutation bias does not explain the atypical AT skew seen in S. aureus. First, recently arisen intergenic SNPs predict the classical replication-derived equilibrium enrichment of T relative to A, contrary to what is observed. Second, sites predicted to be under weak purifying selection display only weak AT skew. Third, AT skew is primarily associated with largely non-synonymous first and second codon sites and is seen with respect to their sense direction, not which replicating strand they lie on. The atypical AT skew we show to be a consequence of the strong bias for genes to be co-oriented with the replicating fork, coupled with the selective avoidance of both stop codons and costly amino acids, which tend to have T-rich codons. That intergenic sequence has more A than T, while at mutational equilibrium a preponderance of T is expected, points to a possible further unresolved selective source of skew
    • …
    corecore