162 research outputs found

    Chemical abundance ratios of galactic globular clusters from modelling integrated light spectroscopy

    Get PDF
    We use our new, flux-calibrated stellar population model of absorption-line indices to derive ages, metallicities, and various element abundance ratios from integrated light spectroscopy of galactic globular clusters. The ages agree well with the literature and are all consistent with the age of the universe. There is a considerable scatter, though, and we obtain systematically larger ages than CMD determinations mostly for metal-rich globular clusters. The metallicities agree well with literature values on the Zinn & West scale, if we adopt iron abundance [Fe/H] for those clusters whose ages agree with the CMD ages. It turns out that the derivation of individual element abundance ratios is not reliable at [Fe/H]<-1 dex, while the [alpha/Fe] ratio is robust at all metallicities. We find general enhancement of light and alpha elements, as expected, with significant variations for some elements. The elements O and Mg follow the same general enhancement with almost identical distributions of [O/Fe] and [Mg/Fe]. We obtain slightly lower [C/Fe] and very high [N/Fe] ratios, instead. This chemical anomaly, commonly attributed to self-enrichment, is well known in globular clusters from individual stellar spectroscopy. It is the first time that this pattern is obtained also from the integrated light. The alpha elements follow a pattern such that the heavier elements Ca and Ti are less enhanced. More specifically, the [Ca/Fe] and [Ti/Fe] ratios are lower than [O/Fe] and [Mg/Fe] by about 0.2 dex. This trend is also seen in recent determinations of element abundances in globular cluster and field stars of the Milky Way. This suggests that Type Ia supernovae contribute significantly to the enrichment of the heavier alpha elements as predicted by nucleosynthesis calculations and galactic chemical evolution models.Comment: MNRAS, re-submitted including referee's comments (minor revision), update on CMD globular cluster age

    Measuring and improving Agile Processes in a small-size software development company

    Get PDF
    Context: Agile software development has become commonplace in software development companies due to the numerous benefits it provides. However, conducting Agile projects is demanding in Small and Medium Enterprises (SMEs), because projects start and end quickly, but still have to fulfil customers' quality requirements. Objective: This paper aims at reporting a practical experience on the use of metrics related to the software development process as a means supporting SMEs in the development of software following an Agile methodology. Method: We followed Action-Research principles in a Polish small-size software development company. We developed and executed a study protocol suited to the needs of the company, using a pilot case. Results: A catalogue of Agile development process metrics practically validated in the context of a small-size software development company, adopted by the company in their Agile projects. Conclusions: Practitioners may adopt these metrics in their Agile projects, especially if working in an SME, and customise them to their own needs and tools. Academics may use the findings as a baseline for new research work, including new empirical studies.The authors would like to thank all the members of the QRapids H2020 project consortium.Peer ReviewedPostprint (published version

    The Age of Ellipticals and the Color-Magnitude Relation

    Full text link
    Using new narrowband color observations of early-type galaxies in clusters, we reconstruct the color-magnitude relation (CMR) with a higher degree of accuracy than previous work. We then use the spectroscopically determined ages and metallicities from three samples (Trager et al 2008, Thomas et al 2005, Gallazzi et al 2006), combined with multi-metallicity SED models, to compare predicted colors for galaxies with young ages (less than 8 Gyr) with the known CMR. We find that the CMR cannot by reproduced by the spectroscopically determined ages and metallicities in any of the samples despite the high internal accuracies to the spectroscopic indices. In contrast, using only the index to determine [Fe/H], and assuming a mean age of 12 Gyr for a galaxy's stellar population, we derive colors that exactly match not only the color zeropoint of the CMR but also its slope. We consider the source of young age estimates, the Hβ\beta index, and examine the conflict between red continuum colors and large Hβ\beta values in galaxy spectra. We conclude that our current understanding of stellar populations is insufficient to correctly interpret Hβ\beta values and that the sum of our galaxy observations supports an old and monolithic scenario of galaxy formation. This result has a devastating impact on every study that has used the Hβ\beta index to calculate galaxy age, as the use of the Hβ\beta versus MgFe diagram will result in incorrectly deduced young ages.Comment: 29 pages, 9 figures. This version deviates from the version accepted by Ap

    How do practitioners perceive the relevance of requirements engineering research? An ongoing study

    Get PDF
    The relevance of Requirements Engineering (RE) research to practitioners is a prerequisite for problem-driven research in the area and key for a long-term dissemination of research results to everyday practice. To understand better how industry practitioners perceive the practical relevance of RE research, we have initiated the RE-Pract project, an international collaboration conducting an empirical study. This project opts for a replication of previous work done in two different domains and relies on survey research. To this end, we have designed a survey to be sent to several hundred industry practitioners at various companies around the world and ask them to rate their perceived practical relevance of the research described in a sample of 418 RE papers published between 2010 and 2015 at the RE, ICSE, FSE, ESEC/FSE, ESEM and REFSQ conferences. In this paper, we summarize our research protocol and present the current status of our study and the planned future steps.Peer ReviewedPostprint (author's final draft

    Stellar population models at high spectral resolution

    Get PDF
    We present new, high-to-intermediate spectral resolution stellar population models, based on four popular libraries of empirical stellar spectra, namely Pickles, ELODIE, STELIB and MILES. These new models are the same as our previous models, but with higher resolution and based on empirical stellar spectra, while keeping other ingredients the same including the stellar energetics, the atmospheric parameters and the treatment of the Thermally-Pulsating Asymptotic Giant Branch and the Horizontal Branch morphology. We further compute very high resolution (R=20,000) models based on the theoretical stellar library MARCS which extends to the near-infrared. We therefore provide merged high resolution stellar population models, extending from ~1000 AA to 25,000 AA. We compare how these libraries perform in stellar population models and highlight spectral regions where discrepancies are found. We confirm our previous findings that the flux around the V-band is lower (in a normalised sense) in models based on empirical libraries than in those based on the BaSeL-Kurucz library, which results in a bluer B-V colour. Most noticeably the theoretical library MARCS gives results fully consistent with the empirical libraries. This same effect is also found in other models using MILES, namely Vazdekis et al. and Conroy & Gunn, even though the latter authors reach the opposite conclusion. The bluer predicted B-V colour (by 0.05 magnitudes in our models) is in better agreement with both the colours of Luminous Red Galaxies and globular cluster data. We test the models on their ability to reproduce, through full spectral fitting, the ages and metallicities of galactic globular clusters as derived from CMD fitting and find overall good agreement. {Abridged}Comment: 30 pages, 36 figures, Monthly Notices of the Royal Astronomical Society in pres

    Globular cluster formation within the Aquarius simulation

    Get PDF
    The Aquarius project is a very high-resolution simulation capable of resolving the full mass range of potential globular cluster (GC) formation sites. With a particle mass mp= 1.4 × 104 M¿, Aquarius yields more than 100 million particles within the virial radius of the central halo which has a mass of 1.8 × 1012 M¿, similar to that of the Milky Way. With this particle mass, dark matter concentrations (haloes) that give rise to GCs via our formation criteria contain a minimum of ~2000 particles. Here, we use this simulation to test a model of metal-poor GC formation based on collapse physics. In our model, GCs form when the virial temperatures of haloes first exceed 104 K as this is when electronic transitions allow the gas to cool efficiently. We calculate the ionizing flux from the stars in these first clusters and stop the formation of new clusters when all the baryonic gas of the Galaxy is ionized. This is achieved by adopting reasonable values for the star formation efficiencies and escape fraction of ionizing photons which result in similar numbers and masses of clusters to those found in the Milky Way. The model is successful in that it predicts ages (peak age ~13.3 Gyr) and a spatial distribution of metal-poor GCs which are consistent with the observed populations in the Milky Way. The model also predicts that less than 5 per cent of GCs within a radius of 100 kpc have a surviving dark matter halo, but the more distant clusters are all found in dark matter concentrations. We then test a scenario of metal-rich cluster formation by examining mergers that trigger star formation within central gas discs. This results in younger (~7¿13.3 Gyr), more centrally located clusters (40 metal-rich GCs within 18 kpc from the centre of the host) which are consistent with the Galactic metal-rich population. We test an alternate model in which metal-rich GCs form in dwarf galaxies that become stripped as they merge with the main halo. This process is inconsistent with observed metal-rich globulars in the Milky Way because it predicts spatial distributions that are far too extended

    The Blue Hook Populations of Massive Globular Clusters

    Full text link
    We present new HST ultraviolet color-magnitude diagrams of 5 massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the "blue hook" phenomenon previously observed in UV images of the globular clusters omega Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for these stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the blue hook stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the blue hook population with respect to metallicity.Comment: Accepted for publication in The Astrophysical Journal. Latex, 14 pages, 1 B&W and 6 color figure
    corecore