14 research outputs found
Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study
Background Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDL-cholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality. Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study). Methods We recruited 1592 individuals with a clinical diagnosis of definite or probable FH according to the Dutch Lipid Clinic Network criteria. We performed a parallel sequencing of the major candidate genes for monogenic hypercholesterolemia (LDLR, APOB, PCSK9, APOE, LDLRAP1, STAP1). Results A total of 213 variants were detected in 1076 subjects. About 90% of them had a pathogenic or likely pathogenic variants. More than 94% of patients carried pathogenic variants in LDLR gene, 27 of which were novel. Pathogenic variants in APOB and PCSK9 were exceedingly rare. We found 4 true homozygotes and 5 putative compound heterozygotes for pathogenic variants in LDLR gene, as well as 5 double heterozygotes for LDLR/APOB pathogenic variants. Two patients were homozygous for pathogenic variants in LDLRAP1 gene resulting in autosomal recessive hypercholesterolemia. One patient was found to be heterozygous for the ApoE variant p.(Leu167del), known to confer an FH phenotype. Conclusions This study shows the molecular characteristics of the FH patients identified in Italy over the last two years. Full phenotypic characterization of these patients and cascade screening of family members is now in progress
Familial hypercholesterolemia: The Italian Atherosclerosis Society Network (LIPIGEN)
BACKGROUND AND AIMS:
Primary dyslipidemias are a heterogeneous group of disorders characterized by abnormal levels of circulating lipoproteins. Among them, familial hypercholesterolemia is the most common lipid disorder that predisposes for premature cardiovascular disease. We set up an Italian nationwide network aimed at facilitating the clinical and genetic diagnosis of genetic dyslipidemias named LIPIGEN (LIpid TransPort Disorders Italian GEnetic Network).
METHODS:
Observational, multicenter, retrospective and prospective study involving about 40 Italian clinical centers. Genetic testing of the appropriate candidate genes at one of six molecular diagnostic laboratories serving as nationwide DNA diagnostic centers.
RESULTS AND CONCLUSIONS:
From 2012 to October 2016, available biochemical and clinical information of 3480 subjects with familial hypercholesterolemia identified according to the Dutch Lipid Clinic Network (DLCN) score were included in the database and genetic analysis was performed in 97.8% of subjects, with a mutation detection rate of 92.0% in patients with DLCN score 656. The establishment of the LIPIGEN network will have important effects on clinical management and it will improve the overall identification and treatment of primary dyslipidemias in Italy
Effects of Y361-auto-phosphorylation on structural plasticity of the HIPK2 kinase domain
The dual-specificity activity of the homeodomain interacting protein kinase 2 (HIPK2) is regulated by cis-auto-phosphorylation of tyrosine 361 (Y361) on the activation loop. Inhibition of this process or substitution of Y361 with nonphosphorylatable amino acid residues result in aberrant HIPK2 forms that show altered functionalities, pathological-like cellular relocalization, and accumulation into cytoplasmic aggresomes. Here, we report an in vitro characterization of wild type HIPK2 kinase domain and of two mutants, one at the regulating Y361 (Y361F, mimicking a form of HIPK2 lacking Y361 phosphorylation) and another at the catalytic lysine 228 (K228A, inactivating the enzyme). Gel filtration and thermal denaturation analyzes along with equilibrium binding experiments and kinase assays performed in the presence or absence of ATP-competitors were performed. The effects induced by mutations on overall stability, oligomerization and activity support the existence of different conformations of the kinase domain linked to Y361 phosphorylation. In addition, our in vitro data are consistent with both the cross-talk between the catalytic site and the activation loop of HIPK2 and the aberrant activities and accumulation previously reported for the Y361 nonphosphorylated HIPK2 in mammalian cells
HIPK2 Controls Cytokinesis and Prevents Tetraploidization by Phosphorylating Histone H2B at the Midbody
Failure in cytokinesis, the final step in cell division, by generating tetra- and polyploidization promotes chromosomal instability, a hallmark of cancer. Here we show that HIPK2, a kinase involved in cell fate decisions in development and response to stress, controls cytokinesis and prevents tetraploidization through its effects on histone H2B. HIPK2 binds and phosphorylates histone H2B at S14 (H2B-S14 P), and the two proteins colocalize at the midbody. HIPK2 depletion by targeted gene disruption or RNA interference results in loss of H2B-S14 P at the midbody, prevention of cell cleavage, and tetra- and polyploidization. In HIPK2 null cells, restoration of wild-type HIPK2 activity or expression of a phosphomimetic H2B-S14D derivative abolishes cytokinesis defects and rescues cell proliferation, showing that H2B-S14 P is required for a faithful cytokinesis. Overall, our data uncover mechanisms of a critical HIPK2 function in cytokinesis and in the prevention of tetraploidization. © 2012 Elsevier Inc