88 research outputs found

    Equatorial waves in some CMIP5 coupled models (with stratosphere)

    No full text
    The Kelvin and the Rossby Gravity Waves (RGWs) packets that dominate the day to day variability in the low equatorial stratosphere (50hPa) are analyzed in 7 ESMs that participate to CMIP5 and that include a well resolved stratosphere. The results are compared to ERAI. Two models are also used to quantify better (i) the impact of the QBO on these waves (MPI-P and MPI-MR), and (ii) the impact of convection (IPSL-CM5A and CM5B)

    Equatorial mountain torques and cold surge preconditioning

    Get PDF
    International audienceThe evolution of the two components of the equatorial mountain torque (EMT) applied by mountains on the atmosphere is analyzed in the NCEP reanalysis. A strong lagged relationship between the EMT component along the Greenwich axis TM1 and the EMT component along the 90°E axis TM2 is found, with a pronounced signal on TM1 followed by a signal of opposite sign on TM2. It is shown that this result holds for themajor massifs (Antarctica, the Tibetan Plateau, the Rockies, and the Andes) if a suitable axis systemis used for each of them. For the midlatitude mountains, this relationship is in part associated with the development of cold surges. Following these results, two hypotheses are made: (i) the mountain forcing on the atmosphere is well measured by the regional EMTs and (ii) this forcing partly drives the cold surges. To support these, a purely dynamical linear model is proposed: it is written on the sphere, uses an f-plane quasigeostrophic approximation, and includes the mountain forcings. In this model, a positive (negative) peak in TM1 produced by a mountain massif in the Northern (Southern) Hemisphere is due to a large-scale high surface pressure anomaly poleward of the massif. At a later stage, high pressure and low temperature anomalies develop in the lower troposphere east of the mountain, explaining the signal on TM2 and providing the favorable conditions for the cold surge development. It is concluded that the EMT is a good measure of the dynamical forcing of the atmospheric flow by the mountains and that the poleward forces exerted by mountains on the atmosphere are substantial drivers of the cold surges, at least in their early stage. Therefore, the EMT time series can be an important diagnostic to assess the representation of mountains in general circulation models. © 2010 American Meteorological Society

    Gravity waves generated by sheared potential vorticity anomalies

    No full text
    International audienceThe gravity waves (GWs) generated by potential vorticity (PV) anomalies in a rotating stratified shear flow are examined under the assumptions of constant vertical shear, two-dimensionality, and unbounded domain. Near a PV anomaly, the associated perturbation is well modeled by quasigeostrophic theory. This is not the case at large vertical distances, however, and in particular beyond the two inertial layers that appear above and below the anomaly; there, the perturbation consists of vertically propagating gravity waves. This structure is described analytically, using an expansion in the continuous spectrum of the singular modes that results from the presence of critical levels. Several explicit results are obtained. These include the form of the Eliassen-Palm (EP) flux as a function of the Richardson number N2/?2, where N is the Brunt-VÀisÀlÀ frequency and L the vertical shear. Its nondimensional value is shown to be approximately exp(-N/L)/8 in the far-fieldGWregion, approximately twice that between the two inertial layers. These results,which imply substantialwave-flowinteractions in the inertial layers, are valid for Richardson numbers larger than 1 and for a large range of PV distributions. In dimensional form they provide simple relationships between the EP fluxes and the large-scale flow characteristics. As an illustration, the authors consider a PV disturbance with an amplitude of 1 PVU and a depth of 1 km, and estimate that the associated EP flux ranges between 0.1 and 100 mPa for a Richardson number between 1 and 10. These values of the flux are comparable with those observed in the lower stratosphere, which suggests that the mechanism identified in this paper provides a substantial gravity wave source, one that could be parameterized in GCMs. © 2010 American Meteorological Society

    The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999

    No full text
    We present a description and evaluation of the Chemistry-Climate Model (CCM) LMDz-REPROBUS, which couples interactively the extended version of the Laboratoire de MĂ©tĂ©orologie Dynamique General Circulation Model (LMDz GCM) and the stratospheric chemistry module of the REactive Processes Ruling the Ozone BUdget in the Stratosphere (REPROBUS) model. The transient simulation evaluated here covers the period 1980–1999. The introduction of an interactive stratospheric chemistry module improves the model dynamical climatology, with a substantial reduction of the temperature biases in the lower tropical stratosphere. However, at high latitudes in the Southern Hemisphere, a negative temperature bias, that is already present in the GCM version, albeit with a smaller magnitude, leads to an overestimation of the ozone depletion and its vertical extent in the CCM. This in turn contributes to maintain low polar temperatures in the vortex, delay the break-up of the vortex and the recovery of polar ozone. The latitudinal and vertical variation of the mean age of air compares favourable with estimates derived from long-lived species measurements, though the model mean age of air is 1–3 years too young in the middle stratosphere. The model also reproduces the observed "tape recorder" in tropical total hydrogen (=H2O+2×CH4), but its propagation is about 30% too fast and its signal fades away slightly too quickly. The analysis of the global distributions of CH4 and N2O suggests that the subtropical transport barriers are correctly represented in the simulation. LMDz-REPROBUS also reproduces fairly well most of the spatial and seasonal variations of the stratospheric chemical species, in particular ozone. However, because of the Antarctic cold bias, large discrepancies are found for most species at high latitudes in the Southern Hemisphere during the spring and early summer. In the Northern Hemisphere, polar ozone depletion and its variability are underestimated in the simulation

    A stochastic parameterization of the gravity waves due to convection and impact on the equatorial stratosphere

    No full text
    Model that includes a well resolved stratosphere. It is based on a stochastic approach, where an ensemble of monochromatic waves is built up, by launching few waves at each time step, and by cumulating the effect of these waves via an AR1 relation between the GWs tendency at a given time step and that at the next time step. Some properties of each waves are chosen randomly, like their wavenumbers and frequencies and with fixed probability distribution. Their amplitude nevertheless, is directly related to the precipitation, translating it in an heating rate and using linear theory to predict the amplitude of the waves such a heating can produce

    Mountain torques and atmospheric oscillations

    Get PDF
    Theoretical work and general circulation model (GCM) experiments suggest that the midlatitude jet stream's interaction with large‐scale topography can drive intraseasonal oscillations in large‐scale atmospheric circulation patterns. In support of this theory, we present new observational evidence that mountain‐induced torques play a key role in 15–30‐day oscillations of the Northern Hemisphere circulation's dominant patterns. The affected patterns include the Arctic Oscillation (AO) and the Pacific‐North‐American (PNA) pattern. Positive torques both accelerate and anticipate the midlatitude westerly winds at these periodicities. Moreover, torque anomalies anticipate the onsets of weather regimes over the Pacific, as well as the break‐ups of hemispheric‐scale regimes

    Inertia-gravity waves in inertially stable and unstable shear flows

    Get PDF
    An inertia-gravity wave (IGW) propagating in a vertically sheared, rotating stratified fluid interacts with the pair of inertial levels that surround the critical level. An exact expression for the form of the IGW is derived here in the case of a linear shear and used to examine this interaction in detail. This expression recovers the classical values of the transmission and reflection coefficients ∣T∣=exp⁥(−πΌ)|T|=\exp(-\pi \mu ) and ∣R∣=0|R|=0, where ÎŒ2=J(1+Îœ2)−1/4\mu^2=J(1+\nu^2)-1/4, JJ is the Richardson number and Îœ\nu the ratio between the horizontal transverse and along-shear wavenumbers. For large JJ, a WKB analysis provides an interpretation of this result in term of tunnelling: an IGW incident to the lower inertial level becomes evanescent between the inertial levels, returning to an oscillatory behaviour above the upper inertial level. The amplitude of the transmitted wave is directly related to the decay of the evanescent solution between the inertial levels. In the immediate vicinity of the critical level, the evanescent IGW is well represented by the quasi-geostrophic approximation, so that the process can be interpreted as resulting from the coupling between balanced and unbalanced motion. The exact and WKB solutions describe the so-called valve effect, a dependence of the behaviour in the region between the inertial levels on the direction of wave propagation. For J<1J < 1 this is shown to lead to an amplification of the wave between the inertial levels. Since the flow is inertially unstable for J<1J<1, this establishes a correspondence between the inertial-level interaction and the condition for inertial instability

    TreeDyn: towards dynamic graphics and annotations for analyses of trees

    Get PDF
    BACKGROUND: Analyses of biomolecules for biodiversity, phylogeny or structure/function studies often use graphical tree representations. Many powerful tree editors are now available, but existing tree visualization tools make little use of meta-information related to the entities under study such as taxonomic descriptions or gene functions that can hardly be encoded within the tree itself (if using popular tree formats). Consequently, a tedious manual analysis and post-processing of the tree graphics are required if one needs to use external information for displaying or investigating trees. RESULTS: We have developed TreeDyn, a tool using annotations and dynamic graphical methods for editing and analyzing multiple trees. The main features of TreeDyn are 1) the management of multiple windows and multiple trees per window, 2) the export of graphics to several standard file formats with or without HTML encapsulation and a new format called TGF, which enables saving and restoring graphical analysis, 3) the projection of texts or symbols facing leaf labels or linked to nodes, through manual pasting or by using annotation files, 4) the highlight of graphical elements after querying leaf labels (or annotations) or by selection of graphical elements and information extraction, 5) the highlight of targeted trees according to a source tree browsed by the user, 6) powerful scripts for automating repetitive graphical tasks, 7) a command line interpreter enabling the use of TreeDyn through CGI scripts for online building of trees, 8) the inclusion of a library of packages dedicated to specific research fields involving trees. CONCLUSION: TreeDyn is a tree visualization and annotation tool which includes tools for tree manipulation and annotation and uses meta-information through dynamic graphical operators or scripting to help analyses and annotations of single trees or tree collections
    • 

    corecore