35 research outputs found

    Localization of deformed wing virus infection in queen and drone Apis mellifera L

    Get PDF
    The distribution of deformed wing virus infection within the honey bee reproductive castes (queens, drones) was investigated by in situ hybridization and immunohistology from paraffin embedded sections. Digoxygenin or CY5.5 fluorochrome end-labelled nucleotide probes hybridizing to the 3' portion of the DWV genome were used to identify DWV RNA, while a monospecific antibody to the DWV-VP1 structural protein was used to identify viral proteins and particles. The histological data were confirmed by quantitative RT-PCR of dissected organs. Results showed that DWV infection is not restricted to the digestive tract of the bee but spread in the whole body, including queen ovaries, queen fat body and drone seminal vesicles

    SPODOBASE : an EST database for the lepidopteran crop pest Spodoptera

    Get PDF
    BACKGROUND: The Lepidoptera Spodoptera frugiperda is a pest which causes widespread economic damage on a variety of crop plants. It is also well known through its famous Sf9 cell line which is used for numerous heterologous protein productions. Species of the Spodoptera genus are used as model for pesticide resistance and to study virus host interactions. A genomic approach is now a critical step for further new developments in biology and pathology of these insects, and the results of ESTs sequencing efforts need to be structured into databases providing an integrated set of tools and informations. DESCRIPTION: The ESTs from five independent cDNA libraries, prepared from three different S. frugiperda tissues (hemocytes, midgut and fat body) and from the Sf9 cell line, are deposited in the database. These tissues were chosen because of their importance in biological processes such as immune response, development and plant/insect interaction. So far, the SPODOBASE contains 29,325 ESTs, which are cleaned and clustered into non-redundant sets (2294 clusters and 6103 singletons). The SPODOBASE is constructed in such a way that other ESTs from S. frugiperda or other species may be added. User can retrieve information using text searches, pre-formatted queries, query assistant or blast searches. Annotation is provided against NCBI, UNIPROT or Bombyx mori ESTs databases, and with GO-Slim vocabulary. CONCLUSION: The SPODOBASE database provides integrated access to expressed sequence tags (EST) from the lepidopteran insect Spodoptera frugiperda. It is a publicly available structured database with insect pest sequences which will allow identification of a number of genes and comprehensive cloning of gene families of interest for scientific community. SPODOBASE is available from URL

    Establishment and analysis of a reference transcriptome for Spodoptera frugiperda

    Get PDF
    International audienceBackground Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides.ResultsIn this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family - ribosomal proteins - as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied.ConclusionWe conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae

    Analysis of Virion Structural Components Reveals Vestiges of the Ancestral Ichnovirus Genome

    Get PDF
    Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA molecules to the caterpillar. These molecules contain virulence genes but lack core genes typically involved in particle production. This is not completely unexpected given that no PDV replication takes place in the caterpillar. Particle production is confined to the wasp ovary where viral DNAs are generated from proviral copies maintained within the wasp genome. We recently showed that the genes involved in bracovirus particle production reside within the wasp genome and are related to nudiviruses. In the present work we characterized genes involved in ichnovirus particle production by analyzing the components of purified Hyposoter didymator Ichnovirus particles by LC-MS/MS and studying their organization in the wasp genome. Their products are conserved among ichnovirus-associated wasps and constitute a specific set of proteins in the virosphere. Strikingly, these genes are clustered in specialized regions of the wasp genome which are amplified along with proviral DNA during virus particle replication, but are not packaged in the particles. Clearly our results show that ichnoviruses and bracoviruses particles originated from different viral entities, thus providing an example of convergent evolution where two groups of wasps have independently domesticated viruses to deliver genes into their hosts

    Correlation of LNCR rasiRNAs Expression with Heterochromatin Formation during Development of the Holocentric Insect Spodoptera frugiperda

    Get PDF
    Repeat-associated small interfering RNAs (rasiRNAs) are derived from various genomic repetitive elements and ensure genomic stability by silencing endogenous transposable elements. Here we describe a novel subset of 46 rasiRNAs named LNCR rasiRNAs due to their homology with one long non-coding RNA (LNCR) of Spodoptera frugiperda. LNCR operates as the intermediate of an unclassified transposable element (TE-LNCR). TE-LNCR is a very invasive transposable element, present in high copy numbers in the S. frugiperda genome. LNCR rasiRNAs are single-stranded RNAs without a prominent nucleotide motif, which are organized in two distinct, strand-specific clusters. The expression of LNCR and LNCR rasiRNAs is developmentally regulated. Formation of heterochromatin in the genomic region where three copies of the TE-LNCR are embedded was followed by chromatin immunoprecipitation (ChIP) and we observed this chromatin undergo dynamic changes during development. In summary, increased LNCR expression in certain developmental stages is followed by the appearance of a variety of LNCR rasiRNAs which appears to correlate with subsequent accumulation of a heterochromatic histone mark and silencing of the genomic region with TE-LNCR. These results support the notion that a repeat-associated small interfering RNA pathway is linked to heterochromatin formation and/or maintenance during development to establish repression of the TE-LNCR transposable element. This study provides insights into the rasiRNA silencing pathway and its role in the formation of fluctuating heterochromatin during the development of one holocentric organism

    Viruses Associated with Ovarian Degeneration in Apis mellifera L. Queens

    Get PDF
    Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L.) colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queen's fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA library from degenerated ovaries contained a high frequency of deformed wing virus (DWV) and Varroa destructor virus 1 (VDV-1) sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens (100% and 67%, respectively for DWV and VDV-1) than in virgin queens (37% and 0%, respectively). Since very high viral titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors are likely to be involved in this pathology

    An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nocturnal insects such as moths are ideal models to study the molecular bases of olfaction that they use, among examples, for the detection of mating partners and host plants. Knowing how an odour generates a neuronal signal in insect antennae is crucial for understanding the physiological bases of olfaction, and also could lead to the identification of original targets for the development of olfactory-based control strategies against herbivorous moth pests. Here, we describe an Expressed Sequence Tag (EST) project to characterize the antennal transcriptome of the noctuid pest model, <it>Spodoptera littoralis</it>, and to identify candidate genes involved in odour/pheromone detection.</p> <p>Results</p> <p>By targeting cDNAs from male antennae, we biased gene discovery towards genes potentially involved in male olfaction, including pheromone reception. A total of 20760 ESTs were obtained from a normalized library and were assembled in 9033 unigenes. 6530 were annotated based on BLAST analyses and gene prediction software identified 6738 ORFs. The unigenes were compared to the <it>Bombyx mori </it>proteome and to ESTs derived from Lepidoptera transcriptome projects. We identified a large number of candidate genes involved in odour and pheromone detection and turnover, including 31 candidate chemosensory receptor genes, but also genes potentially involved in olfactory modulation.</p> <p>Conclusions</p> <p>Our project has generated a large collection of antennal transcripts from a Lepidoptera. The normalization process, allowing enrichment in low abundant genes, proved to be particularly relevant to identify chemosensory receptors in a species for which no genomic data are available. Our results also suggest that olfactory modulation can take place at the level of the antennae itself. These EST resources will be invaluable for exploring the mechanisms of olfaction and pheromone detection in <it>S. littoralis</it>, and for ultimately identifying original targets to fight against moth herbivorous pests.</p

    The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp <it>Chelonus inanitus </it>(Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences.</p> <p>Results</p> <p>About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein.</p> <p>An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the <it>Chelonus </it>lineage. Venom components specific to <it>C. inanitus </it>included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins.</p> <p>Conclusions</p> <p>The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of <it>C. inanitus </it>appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.</p

    The Melolontha melolontha Entomopoxvirus (MmEPV) Fusolin Is Related to the Fusolins of Lepidopteran EPVs and to the 37K Baculovirus Glycoprotein

    Get PDF
    AbstractWe have cloned and sequenced a 1.7-kbp DNA fragment of the MmEPV genome encompassing the major polypeptide of the spindle-shaped inclusions gene termed fusolin. The sequence contained a single open reading frame of 1203 nt capable of coding for a polypeptide of 45.8 kDa. The 13 N-terminal amino acid (aa) residues were hydrophobic and could act as a signal peptide. The aa sequence also contained 13 cysteine residues very likely involved in paracrystal formation. This sequence showed significant homologies with the fusolins of two lepidopteran EPVs, the Choristoneura biennis EPV (CbEPV) and the Heliothis armigera EPV, and also with the 37K glycoproteins of Autographa californica and Orgyia pseudotsugata baculoviruses. No homology was found between the MmEPV fusolin and the 100K MmEPV spherulin, nor with the 11OK polypeptide of the CbEPV and Amsacta moorei EPV spheroidins. These data were confirmed by Western blot analysis. Transfection of vaccinia-infected mammalian cells with a plasmid encompassing the fusolin sequence plus the upstream regulatory region resulted in transient expression of the gene. This indicated that the vaccinia transcription machinery is able to transcribe the fusolin gene. The fusolin was also expressed in insect cells via a recombinant baculovirus
    corecore