208 research outputs found

    Rapeseed and milk protein exhibit a similar overall nutritional value but marked difference in postprandial regional nitrogen utilization in rats

    Get PDF
    Background: Rapeseed is an emerging and promising source of dietary protein for human nutrition and health. We previously found that rapeseed protein displayed atypical nutritional properties in humans, characterized by low bioavailability and a high postprandial biological value. The objective of the present study was to investigate the metabolic fate of rapeseed protein isolate (RPI) and its effect on protein fractional synthesis rates (FSR) in various tissues when compared to a milk protein isolate (MPI). Methods: Rats (n = 48) were given a RPI or MPI meal, either for the first time or after 2-week adaptation to a MPI or RPI-based diet. They were divided in two groups for measuring the fed-state tissue FSR 2 h after the meal (using a flooding dose of (13)C-valine) and the dietary N postprandial distribution at 5 h (using (15)N-labeled meals). Results: RPI and MPI led to similar FSR and dietary nitrogen (N) losses (ileal and deamination losses of 4% and 12% of the meal, respectively). By contrast, the dietary N incorporation was significantly higher in the intestinal mucosa and liver (+36% and +16%, respectively) and lower in skin (-24%) after RPI than MPI. Conclusions: Although RPI and MPI led to the same overall level of postprandial dietary N retention in rats (in line with our findings in humans), this global response conceals marked qualitative differences at the tissue level regarding dietary N accretion. The fact that FSR did not however differed between groups suggest a differential modulation of proteolysis after RPI or MPI ingestion, or other mechanisms that warrant further study

    Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin

    Get PDF
    Background: Human gut bacteria can synthesize proteinogenic amino acids and produce a range of metabolites via protein fermentation, some known to exert beneficial or harmful physiological effects on the host. However, the effects of the type and amount of dietary protein consumed on these metabolic processes, as well as the effects of the microbiota-derived amino acids and related metabolites on the host health are still predominantly unknown. Scope and approach:This review provides an up-to-date description of the dominant pathways/genes involved in amino acid metabolism in gut bacteria, and provides an inventory of metabolic intermediates derived from bacterial protein fermentation that may affect human health. Advances in understanding bacterial protein fermentation pathways and metabolites generated at a global level via the implementation of ‘omics’ technologies are reviewed. Finally, the impact of dietary protein intake and high-protein diets on human health is discussed. Key findings and conclusions:The intestinal microbiota is able to synthesize amino acids, but the net result of amino acid production and utilization, according to dietary patterns still needs to be determined. The amount of ingested dietary protein appears to modify both the diversity and composition of the intestinal microbiota as well as the luminal environment of the intestinal epithelium and peripheral tissues. The understanding of the consequences of such changes on the host physiology and pathophysiology is still in an early stage but major progress is expected in the near future with the investigation of host-microbe omics profiles from well-controlled human intervention studies.This works is supported by the European Union's Seventh Framework Program under the grant agreement no 613979 (MyNewGut).Peer reviewe

    Comparative effectiveness of dipeptidyl peptidase-4 (DPP-4) inhibitors and human glucagon-like peptide-1 (GLP-1) analogue as add-on therapies to sulphonylurea among diabetes patients in the Asia-Pacific region: a systematic review

    Get PDF
    The prevalence of diabetes mellitus is rising globally, and it induces a substantial public health burden to the healthcare systems. Its optimal control is one of the most significant challenges faced by physicians and policy-makers. Whereas some of the established oral hypoglycaemic drug classes like biguanide, sulphonylureas, thiazolidinediones have been extensively used, the newer agents like dipeptidyl peptidase-4 (DPP-4) inhibitors and the human glucagon-like peptide-1 (GLP-1) analogues have recently emerged as suitable options due to their similar efficacy and favorable side effect profiles. These agents are widely recognized alternatives to the traditional oral hypoglycaemic agents or insulin, especially in conditions where they are contraindicated or unacceptable to patients. Many studies which evaluated their clinical effects, either alone or as add-on agents, were conducted in Western countries. There exist few reviews on their effectiveness in the Asia-Pacific region. The purpose of this systematic review is to address the comparative effectiveness of these new classes of medications as add-on therapies to sulphonylurea drugs among diabetic patients in the Asia-Pacific countries. We conducted a thorough literature search of the MEDLINE and EMBASE from the inception of these databases to August 2013, supplemented by an additional manual search using reference lists from research studies, meta-analyses and review articles as retrieved by the electronic databases. A total of nine randomized controlled trials were identified and described in this article. It was found that DPP-4 inhibitors and GLP-1 analogues were in general effective as add-on therapies to existing sulphonylurea therapies, achieving HbA1c reductions by a magnitude of 0.59–0.90% and 0.77–1.62%, respectively. Few adverse events including hypoglycaemic attacks were reported. Therefore, these two new drug classes represent novel therapies with great potential to be major therapeutic options. Future larger-scale research should be conducted among other Asia-Pacific region to evaluate their efficacy in other ethnic groups

    Tumor Progression Locus 2 (Tpl2) Deficiency Does Not Protect against Obesity-Induced Metabolic Disease

    Get PDF
    Obesity is associated with a state of chronic low grade inflammation that plays an important role in the development of insulin resistance. Tumor progression locus 2 (Tpl2) is a serine/threonine mitogen activated protein kinase kinase kinase (MAP3K) involved in regulating responses to specific inflammatory stimuli. Here we have used mice lacking Tpl2 to examine its role in obesity-associated insulin resistance. Wild type (wt) and tpl2−/− mice accumulated comparable amounts of fat and lean mass when fed either a standard chow diet or two different high fat (HF) diets containing either 42% or 59% of energy content derived from fat. No differences in glucose tolerance were observed between wt and tpl2−/− mice on any of these diets. Insulin tolerance was similar on both standard chow and 42% HF diets, but was slightly impaired in tpl2−/− mice fed the 59% HFD. While gene expression markers of macrophage recruitment and inflammation were increased in the white adipose tissue of HF fed mice compared with standard chow fed mice, no differences were observed between wt and tpl2−/− mice. Finally, a HF diet did not increase Tpl2 expression nor did it activate Extracellular Signal-Regulated Kinase 1/2 (ERK1/2), the MAPK downstream of Tpl2. These findings argue that Tpl2 does not play a non-redundant role in obesity-associated metabolic dysfunction

    Modelling of Usual Nutrient Intakes: Potential Impact of the Choices Programme on Nutrient Intakes in Young Dutch Adults

    Get PDF
    Introduction The Choices Programme is an internationally applicable nutrient profiling system with nutrition criteria for trans fatty acids (TFA), saturated fatty acids, sodium, added sugar and for some product groups energy and fibre. These criteria determine whether foods are eligible to carry a “healthier option” stamp. In this paper a nutrient intake modelling method is described to evaluate these nutritional criteria by investigating the potential effect on nutrient intakes. Methods Data were combined from the 2003 Dutch food consumption survey in young adults (aged 19–30) and the Dutch food composition table into the Monte Carlo Risk Assessment model. Three scenarios were calculated: the “actual intakes” (scenario 1) were compared to scenario 2, where all foods that did not comply were replaced by similar foods that did comply with the Choices criteria. Scenario 3 was the same as scenario 2 adjusted for the difference in energy density between the original and replacement food. Additional scenarios were calculated where snacks were not or partially replaced and stratified analyses for gender, age, Body Mass Index (BMI) and education. Results Calculated intake distributions showed that median energy intake was reduced by 16% by replacing normally consumed foods with Choices compliant foods. Intakes of nutrients with a maximal intake limit were also reduced (ranging from -23% for sodium and -62% for TFA). Effects on intakes of beneficial nutrients varied from an unintentional reduction in fat soluble vitamin intakes (-15 to -28%) to an increase of 28% for fibre and 17% calcium. Stratified analyses in this homogeneous study population showed only small differences across gender, age, BMI and education. Conclusions This intake modelling method showed that with consumption of Choices compliant foods, nutrient intakes shift towards population intake goals for the nutrients for which nutrition criteria were defined, while effects on beneficial nutrients were diverse

    Proposal of a Nutritional Quality Index (NQI) to Evaluate the Nutritional Supplementation of Sportspeople

    Get PDF
    Background: Numerous supplements are used by sportspeople. They are not always appropriate for the individual or the sports activity and may do more harm than good. Vitamin and mineral supplements are unnecessary if the energy intake is sufficient to maintain body weight and derives from a diet with an adequate variety of foods. The study objectives were to evaluate the main nutrients used as supplements in sports and to propose a nutritional quality index (NQI) that enables sportspeople to optimize their use of supplements and detect and remedy possible nutritional deficits. Material and Methods: A nutritional study was performed in 485 sportspeople recruited from Centros Andaluces de Medicina del Deporte, (CAMD). All completed socio-demographic, food frequency, and lifestyle questionnaires. The nutritional quality of their diet and need for supplementation were evaluated by scoring their dietary intake with and without supplementation, yielding two NQI scores (scales of 0-21 points) for each participant. Results: A superior mean NQI score was obtained when the supplements taken by participants were not included (16. 28 (SD of 3.52)) than when they were included (15.47 (SD: 3.08)), attributable to an excessive intake of some nutrients through supplementation. Conclusions: These results indicate that sportspeople with a varied and balanced diet do not need supplements, which appear to offer no performance benefits and may pose a health risk.The authors are grateful to the Junta de Andalucía, Spain (Research Group AGR-255“Nutrition. Diet and Risk Assessment”), a collaboration agreement with the Andalusian Centres of Sports Medicine (Junta de Andalucía) and the FPU program of the Spanish Ministry of Education and Science. Study participants were recruited through the project “Nutritional and diet assessment methodologies applied to the Andalusian sportsperson in Andalusian Sports centres”, Research project FMD2010SC0071 of the Junta de Andalucía

    Activation of Pregnane X Receptor by Pregnenolone 16 α-carbonitrile Prevents High-Fat Diet-Induced Obesity in AKR/J Mice

    Get PDF
    Pregnane X receptor (PXR) is known to function as a xenobiotic sensor to regulate xenobiotic metabolism through selective transcription of genes responsible for maintaining physiological homeostasis. Here we report that the activation of PXR by pregnenolone 16α-carbonitrile (PCN) in AKR/J mice can prevent the development of high-fat diet-induced obesity and insulin resistance. The beneficial effects of PCN treatment are seen with reduced lipogenesis and gluconeogenesis in the liver, and lack of hepatic accumulation of lipid and lipid storage in the adipose tissues. RT-PCR analysis of genes involved in gluconeogenesis, lipid metabolism and energy homeostasis reveal that PCN treatment on high-fat diet-fed mice reduces expression in the liver of G6Pase, Pepck, Cyp7a1, Cd36, L-Fabp, Srebp, and Fas genes and slightly enhances expression of Cyp27a1 and Abca1 genes. RT-PCR analysis of genes involved in adipocyte differentiation and lipid metabolism in white adipose tissue show that PCN treatment reduces expression of PparÎł2, Acc1, Cd36, but increases expression of Cpt1b and Pparα genes in mice fed with high-fat diet. Similarly, PCN treatment of animals on high-fat diet increases expression in brown adipose tissue of Pparα, Hsl, Cpt1b, and Cd36 genes, but reduces expression of Acc1 and Scd-1 genes. PXR activation by PCN in high-fat diet fed mice also increases expression of genes involved in thermogenesis in brown adipose tissue including Dio2, Pgc-1α, Pgc-1ÎČ, Cidea, and Ucp-3. These results verify the important function of PXR in lipid and energy metabolism and suggest that PXR represents a novel therapeutic target for prevention and treatment of obesity and insulin resistance

    Increased Oral Detection, but Decreased Intestinal Signaling for Fats in Mice Lacking Gut Microbiota

    Get PDF
    Germ-free (GF) mice lacking intestinal microbiota are significantly leaner than normal (NORM) control mice despite consuming more calories. The contribution of microbiota on the recognition and intake of fats is not known. Thus, we investigated the preference for, and acceptance of, fat emulsions in GF and NORM mice, and associated changes in lingual and intestinal fatty acid receptors, intestinal peptide content, and plasma levels of gut peptides. GF and NORM C57Bl/6J mice were given 48-h two-bottle access to water and increasing concentrations of intralipid emulsions. Gene expression of the lingual fatty acid translocase CD36 and protein expression of intestinal satiety peptides and fatty-acid receptors from isolated intestinal epithelial cells were determined. Differences in intestinal enteroendocrine cells along the length of the GI tract were quantified. Circulating plasma satiety peptides reflecting adiposity and biochemical parameters of fat metabolism were also examined. GF mice had an increased preference and intake of intralipid relative to NORM mice. This was associated with increased lingual CD36 (P<0.05) and decreased intestinal expression of fatty acid receptors GPR40 (P<0.0001), GPR41 (P<0.0001), GPR43 (P<0.05), and GPR120 (P<0.0001) and satiety peptides CCK (P<0.0001), PYY (P<0.001), and GLP-1 (P<0.001). GF mice had fewer enteroendocrine cells in the ileum (P<0.05), and more in the colon (P<0.05), relative to NORM controls. Finally, GF mice had lower levels of circulating leptin and ghrelin (P<0.001), and altered plasma lipid metabolic markers indicative of energy deficits. Increased preference and caloric intake from fats in GF mice are associated with increased oral receptors for fats coupled with broad and marked decreases in expression of intestinal satiety peptides and fatty-acid receptors
    • 

    corecore