46 research outputs found
Recommended from our members
Stable climate metrics for emissions of short and long-lived species â combining steps and pulses
Multi-gas climate agreements rely on a methodology (widely referred to as âmetricsâ) to place emissions of different gases on a CO2-equivalent scale. There has been an ongoing debate on the extent to which existing metrics serve current climate policy. Endpoint metrics (such as global temperature-change potential GTP) are the most closely related to policy goals based on temperature limits (such as Article 2 of the Paris Agreement). However, for short-lived climate forcers (SLCFs), endpoint metrics vary strongly with time horizon making them difficult to apply in practical situations. We show how combining endpoint metrics for a step change in SLCF emissions with a pulse emission of CO2 leads to an endpoint metric that only varies slowly over time horizons of interest. We therefore suggest that these combined step-pulse metrics (denoted combined global warming potential CGWP and combined global temperature-change potential CGTP) can be a useful way to include short and long-lived species in the same basket in policy applications â this assumes a single basket approach is preferred by policy makers. The advantage of a combined step-pulse metric for SLCFs is that for species with a lifetime less than 20 years a single time horizon of around 75 years can cover the range of timescales appropriate to the Paris Agreement.
These metrics build on recent work using the traditional global warming potential (GWP) metric in a new way, called GWP*. We show how the GWP* relates to CGWP and CGTP and that it systematically underestimates the temperature effects of SLCFs by up to 20%. These step-pulse metrics are all more appropriate than the conventional GWP for comparing the relative contributions of different species to future temperature targets and for SLCFs they are much less dependent on time horizon than GTP
Transmission of climate risks across sectors and borders
Systemic climate risks, which result from the potential for cascading impacts through inter-related systems, pose particular challenges to risk assessment, especially when risks are transmitted across sectors and international boundaries. Most impacts of climate variability and change affect regions and jurisdictions in complex ways, and techniques for assessing this transmission of risk are still somewhat limited. Here, we begin to define new approaches to risk assessment that can account for transboundary and trans-sector risk transmission, by presenting: (i) a typology of risk transmission that distinguishes clearly the role of climate versus the role of the social and economic systems that distribute resources; (ii) a review of existing modelling, qualitative and systems-based methods of assessing risk and risk transmission; and (iii) case studies that examine risk transmission in human displacement, food, water and energy security. The case studies show that policies and institutions can attenuate risks significantly through cooperation that can be mutually beneficial to all parties. We conclude with some suggestions for assessment of complex risk transmission mechanisms: use of expert judgement; interactive scenario building; global systems science and big data; innovative use of climate and integrated assessment models; and methods to understand societal responses to climate risk. These approaches aim to inform both research and national-level risk assessment
Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy
Background
A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets.
Methods
Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendallâs tau for dichotomous variables, or JonckheereâTerpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis.
Results
A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both pâ<â0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROCâ=â0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all pâ<â0.001).
Conclusion
We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets
European Union funding: 821205, 821003, 820829.
Wellcome Trust: 205212/Z/16/
Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets
European Union funding: 821205, 821003, 820829.
Wellcome Trust: 205212/Z/16/
Populationâbased cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with allâcause 30âday readmissions and complications in a prospective populationâbased cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing allâcause 30âday readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a twoâlevel hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy
Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations.
Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (>â90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves.
Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45â85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations >â90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SEâ=â0.013, pââ90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score.
Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead