45 research outputs found

    Genomic Instability Decreases in HIV Patient by Complementary Therapy with Rosmarinus officinalis Extracts

    Get PDF
    Genomic instability is associated with increased oxidative stress in patients with human immunodeficiency virus (HIV). The aim of this study was to determine the effect of intake of methanolic and aqueous extracts of Rosmarinus officinalis on genomic instability in HIV patients. We studied 67 HIV patients under pharmacological treatment with ATRIPLA who were divided into three groups: group 1, patients under ATRIPLA antiretroviral therapy; group 2, patients with ATRIPLA and rosemary aqueous extract (4 g/L per day); and group 3, patients with ATRIPLA and rosemary methanolic extract (400 mg/day). The genomic instability was evaluated through the buccal micronucleus cytome assay. Oral epithelial cells were taken at the beginning and 1 and 4 months later. The groups that received the pharmacological therapy with ATRIPLA and the complementary therapy with R. officinalis extracts showed a decrease in the number of cells with micronuclei and nuclear abnormalities compared with the group that only received ATRIPLA. The complementary therapy with R. officinalis decreased the genomic instability in HIV patients

    Assaying Environmental Nickel Toxicity Using Model Nematodes

    Get PDF
    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species

    A Physiological Approach to the Study of Pseudopod Extension in the Amoeboid Sperm of the Nematode Caenorhabditis elegans

    No full text
    Fertilization is the process in which both the spermatozoon and the oocyte must undergo a myriad of physiological changes resulting in successful fusion to produce progeny. Spermatozoa are highly motile cells that must reach the oocyte in the environment where fertilization takes place and in this regard the study of acquisition of motility in sperm cells is important to understand sperm-egg interactions. In the case of the nematode Caenorhabditis elegans, fertilization takes place in the hermaphrodite reproductive tract where sessile spermatids must extend a pseudopod to become motile. The process of pseudopod extension initiates with rearrangement of the plasma membrane and culminates with the extension of a pseudopod by an MSP-based cytoskeleton. Thus, successful fertilization depends on the initiation of a signaling pathway that acts on proteins present on the plasma membrane and has as an ultimate target the MSP filament. A genetic model of pseudopod extension suggests the interaction of proteins from the SPE group in a multicomponent complex that regulates the timing for pseudopod extension. This complex of proteins resembles membrane microdomains, regions of the plasma membrane enriched in cholesterol and sphingolipids, where membrane and cytosolic proteins from a common signaling pathway interact. In the present work, the presence and involvement of membrane microdomains in C. elegans spermatids is tested. This hypothesis is approached by the use of biochemical assays and microscopy techniques that give useful information on the physiological process of motility acquisition. The results suggest that male-derived spermatids are subject to physiological changes that prevent pseudopod extension prior to ejaculation and that membrane microdomains are present in these cells and involved in successful fertilization of the oocyte through the extension of a pseudopod. Using an integrative approach, these results revealed that membrane dynamics are responsible for the signaling cascade that triggers acquisition of motility, complementing the genetic model of pseudopod extension

    Control of hormone-driven organ disassembly by ECM remodeling and Yorkie-dependent apoptosis

    No full text
    Epithelia grow and shape into functional structures during organogenesis. Although most of the focus on organogenesis has been drawn to the building of biological structures, the disassembly of pre-existing structures is also an important event to reach a functional adult organ. Examples of disassembly processes include the regression of the Müllerian or Wolffian ducts during gonad development and mammary gland involution during the post-lactational period in adult females. To date, it is unclear how organ disassembly is controlled at the cellular level. Here, we follow the Drosophila larval trachea through metamorphosis and show that its disassembly is a hormone-driven and precisely orchestrated process. It occurs in two phases: first, remodeling of the apical extracellular matrix (aECM), mediated by matrix metalloproteases and independent of the actomyosin cytoskeleton, results in a progressive shortening of the entire trachea and a nuclear-to-cytoplasmic relocalization of the Hippo effector Yorkie (Yki). Second, a decreased transcription of the Yki target, Diap1, in the posterior metameres and the activation of caspases result in the apoptotic loss of the posterior half of the trachea while the anterior half escapes cell death. Thus, our work unravels a mechanism by which hormone-driven ECM remodeling controls sequential tissue shortening and apoptotic cell removal through the transcriptional activity of Yki, leading to organ disassembly during animal development.The research leading to the results has received funding from the Spanish Ministry of Science and Innovation PID2019-109117GB-100 and PGC2018-094254-B-I00. We acknowledge the support of the CERCA Programme/Generalitat de Catalunya, the Fundaciòn Biofisika Bizkaia, and the Basque Excellence Research Centre of the Basque Government

    Two consecutive microtubule-based epithelial seaming events mediate dorsal closure in the scuttle fly Megaselia abdita

    No full text
    Evolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster, dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression.We would like to thank Eva Jiménez-Guri, Karl Wotton, and Arturo D’Angelo for reagents and invaluable technical advice during the development of the project. We thank Steffen Lemke for providing training and technical advice as well as Jordi Casanova and Petra Stockinger for discussions and critical reading of the manuscript. All confocal imaging was done at the CRG Advanced Light Microscopy Unit. JJF-Z was supported by a CRG International Interdisciplinary Postdoctoral Programme (INTERPOD) fellowship, co-funded by Marie Curie Actions. We acknowledge support from the Spanish Ministry of Economy and Competitiveness to the EMBL partnership, 'Centro de Excelencia Severo Ochoa', the, Plan Nacional BFU2015-68754-P (MINECO) and the CERCA programme/Generalitat de Catalunya
    corecore