143 research outputs found

    Development and evaluation of a real-time PCR assay for detection and quantification of blastocystis parasites in human stool samples: prospective study of patients with hematological malignancies.

    Get PDF
    International audienceBlastocystis anaerobic parasites are widespread worldwide in the digestive tract of many animal species, including humans. Epidemiological Blastocystis studies are often limited by the poor sensitivity of standard parasitological assays for its detection. This report presents a highly sensitive real-time quantitative PCR (qPCR) assay developed to detect Blastocystis parasites in stool samples. The assay targets a partial sequence of the Blastocystis small ribosomal subunit (SSU) rRNA gene, allowing subtyping (ST) of Blastocystis isolates by direct sequencing of qPCR products. This qPCR method was assessed in a prospective study of 186 patients belonging to two cohorts--a group of 94 immunocompromised patients presenting hematological malignancies and a control group of 92 nonimmunocompromised patients. Direct-light microscopy and xenic in vitro stool culture analysis showed only 29% and 52% sensitivity, respectively, compared to our qPCR assay. Of the 27 (14.5%) Blastocystis-positive patients, 8 (4%) experienced digestive symptoms. No correlation was found between symptomatic patients and immune status, parasite load, or parasite subtypes, although subtyping of all isolates revealed a high (63.0%) prevalence of ST4. Two unexpected avian subtypes were found, i.e., ST6 and ST7, which are frequently isolated in Asia but rarely present in Western countries. In conclusion, this qPCR proved by far the most sensitive of the tested methods and allowed subtype determination by direct sequencing of qPCR products. New diagnostic tools such as the qPCR are essential for evaluating the clinical relevance of Blastocystis subtypes and their role in acute or chronic digestive disorders

    Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis mellifera

    Get PDF
    International audienceThe invasive microsporidian species, Nosema ceranae, causes nosemosis in honeybees and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the site of infection; the microsporidium can disturb the functioning of this organ and, thus, the bee physiology. Host defense against pathogens is not limited to resistance (i.e. the immune response) but also involves resilience. This process implies that the host can tolerate and repair damage inflicted by the infection– by the pathogen itself or by an excessive host immune response. Enterocyte damage caused by N. ceranae can be compensated by proliferation of intestinal stem cells (ISCs) that are under the control of multiple pathways. In the present study, we investigated the impact of N. ceranae on honeybee epithelium renewal by following the mitotic index of midgut stem cells during a 22-day N. ceranae infection. Fluorescence in situ hybridization (FISH) and immunostaining experiments were performed to follow the parasite proliferation/progression in the intestinal tissue, especially in the ISCs as they are key cells for the midgut homeostasis. We also monitored the transcriptomic profile of 7 genes coding for key proteins involved in pathways implicated in the gut epithelium renewal and homeostasis. We have shown for the first time that N. ceranae can negatively alter the gut epithelium renewal rate and disrupt some signaling pathways involved in the gut homeostasis. This alteration is correlated to a reduced longevity of N. ceranae-infected honeybees and we can assume that honeybee susceptibility to N. ceranae could be due to an impaired ability to repair gut damage

    Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp) and highly compact (~1 gene/kb) genome of the human parasite <it>Encephalitozoon cuniculi </it>has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in <it>E. cuniculi </it>and to show whether these motifs are conserved among the phylum Microsporidia.</p> <p>Results</p> <p>To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (<7 nts). Most of the <it>E. cuniculi </it>genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including <it>Antonospora locustae</it>, <it>Enterocytozoon bieneusi</it>, <it>Anncaliia algerae </it>(syn. <it>Brachiola algerae</it>) and <it>Nosema ceranae</it>. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs) had been badly predicted.</p> <p>Conclusion</p> <p>We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore, 5'UTRs being strongly reduced, these signals can be used to ensure the accurate prediction of translation initiation codons for microsporidian genes and to improve microsporidian genome annotation.</p

    Toxoplasma gondii myosins B/C: one gene, two tails, two localizations, and a role in parasite division

    Get PDF
    In apicomplexan parasites, actin-disrupting drugs and the inhibitor of myosin heavy chain ATPase, 2,3-butanedione monoxime, have been shown to interfere with host cell invasion by inhibiting parasite gliding motility. We report here that the actomyosin system of Toxoplasma gondii also contributes to the process of cell division by ensuring accurate budding of daughter cells. T. gondii myosins B and C are encoded by alternatively spliced mRNAs and differ only in their COOH-terminal tails. MyoB and MyoC showed distinct subcellular localizations and dissimilar solubilities, which were conferred by their tails. MyoC is the first marker selectively concentrated at the anterior and posterior polar rings of the inner membrane complex, structures that play a key role in cell shape integrity during daughter cell biogenesis. When transiently expressed, MyoB, MyoC, as well as the common motor domain lacking the tail did not distribute evenly between daughter cells, suggesting some impairment in proper segregation. Stable overexpression of MyoB caused a significant defect in parasite cell division, leading to the formation of extensive residual bodies, a substantial delay in replication, and loss of acute virulence in mice. Altogether, these observations suggest that MyoB/C products play a role in proper daughter cell budding and separation

    A mouse ear skin model to study the dynamics of innate immune responses against the microsporidian Encephalitozoon cuniculi

    Get PDF
    Microsporidia are obligate intracellular parasites related to fungi that cause severe infections in immunocompromised individuals. Encephalitozoon cuniculi is a microsporidian species capable of infecting mammals, including human and rodents. In response to microsporidian infection, innate immune system serves as the first line of defense and allows a partial clearance of the parasite via the innate immune cells, namely macrophages, neutrophils, dendritic cells, and Natural Killer cells. According to the literature, microsporidia bypass this response in vitro by modulating the response of macrophages. In order to study host-parasites interactions in vivo, we developed a model using the mouse ear pinna in combination with an intravital imaging approach. Fluorescent E. cuniculi spores were inoculated into the skin tissue to follow for the first time in real time in an in vivo model the recruitment dynamics of EGFP + phagocytic cells in response to the parasite. The results show that parasites induce an important inflammatory recruitment of phagocytes, with alterations of their motility properties (speed, displacement length, straightness). This cellular response persists in the injection zone, with spores detected inside the phagocytes up to 72 h post-infection. Immunostainings performed on ear tissue cryosections evoke the presence of developing infectious foci from 5 days post-infection, in favor of parasite proliferation in this tissue. Overall, the newly set up mice ear pinna model will increase our understanding of the immunobiology of microsporidia and in particular, to know how they can bypass and hijack the host immune system of an immunocompetent or immunosuppressed host

    Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite

    Get PDF
    International audienceABSTRACT: BACKGROUND: Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. RESULTS: Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. CONCLUSIONS: This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions

    New Insights into Blastocystis spp.: A Potential Link with Irritable Bowel Syndrome

    Get PDF
    International audienceBlastocystis spp. belong to the phylum Stramenopila, a complex and heterogeneous evolutionary assemblage of heterotrophic and photosynthetic protozoa [1]. Interestingly, this is the only stramenopile living in the lower digestive tract of humans, and it also lives in other mammals, birds, reptiles, amphibians, and insects [1]. Even though isolates were reported to be morphologically indistinguishable, an extensive genetic variation among isolates from both humans and animals has been observed. Thirteen subtypes (ST1-ST13), with the first nine being found in humans, have been identified based on genes coding for the small-subunit ribosomal RNA [2]. Preferential repartition of STs exists among animals that appear to constitute the main reservoir for environmental dissemination and human contamination

    Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Get PDF
    International audienceBACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation

    Séquençage du génome du parasite intestinal Blastocystis sp. (ST7) (vers une meilleure compréhension des capacités métaboliques d'organites apparentés aux mitochondries chez ce microorganisme anaérobie)

    No full text
    Blastocystis sp., est un straménopile parasite anaérobie fréquemment rencontré dans le tractus gastro-intestinal de l homme et de divers animaux. Ce microorganisme, parfois responsable de désordres digestifs aigus, pourrait conduire à des troubles fonctionnels intestinaux tels que le syndrome de l intestin irritable (IBS). Le génome de Blastocystis sp., qui a fait l'objet d'un projet de séquençage en collaboration avec le Génoscope d Evry, nous a permis de caractériser le plus petit génome de straménopile séquencé à ce jour (18,8 Mpb), avec une capacité codante de 6020 gènes. L acquisition de nombreux gènes par transferts horizontaux est une caractéristique majeure de ce génome, qui montre d abondants réarrangements génomiques. Bien qu évoluant en anaérobiose, Blastocystis sp. possède des organites morphologiquement proches des mitochondries, appelés mitochondrion-like organelles (MLOs). Nous avons montré que ces organites comportaient un génome circulaire de type mitochondrial de 29,27 kpb, mais dépourvu des gènes codant pour les cytochromes. Des analyses in silico nous ont permis de caractériser le protéome des MLOs (365 protéines), conduisant à l établissement d un modèle prédictif des voies métaboliques associées à ces organites, avec notamment une chaine respiratoire limitée aux complexes I et II. Nous avons ainsi montré que les MLOs présentent des caractères communs aux mitochondries anaérobies et aux hydrogénosomes (présence d une PFOR et d une hydrogénase à fer), suggérant que Blastocystis sp. comporte des mitochondries anaérobies modifiées, qui résulteraient d une adaptation du parasite à son environnement. Par ailleurs, la prédiction du sécrétome de Blastocystis sp. révèle la présence de facteurs de virulence potentiels, pouvant être impliqués dans l altération de l épithélium intestinal et le contournement du système immunitaire de l hôte.Blastocystis sp. is a highly prevalent anaerobic eukaryotic stramenopile parasite found in the intestinal tract of humans and various animals. This microorganism, sometimes associated with acute intestinal disorders, could be responsible for functional intestinal disorders such as the irritable bowel syndrom (IBS). As part of a collaborative sequencing project with the Genoscope (CEA Evry, France), we were able to caracterize the smallest stramenopile genome sequenced to date (18.8 Mbp) with a 6020 genes coding capacity. The gain of many genes through horizontal gene transfer is amajor characteristic of this genome, which shows extensive genomic rearrangements. Despite the anaerobic nature of Blastocytists sp., this eukaryote harbours nevertheless mitochondrion-like organelles (MLOs). We have shown that these organelles have a 29.27 kbp mitochondrial-type circular genome that lacks cytochrome coding genes. In silico analysis allowed us to predict the MLOs proteome (365 proteins), with the subsequent predictive model of the metabolic pathways associated with these organelles, including an electron transport chain (ETC) restricted to complex I and II. We have shown that MLOs shared common characteristics with anaerobic mitochondrion and hydrogenosomes (presence of a PFOR and an iron-hydrogenase), which could mean that Blastocystis sp. harbours modified anaerobic mitochondrion that resulted from the parasite adaptation to its anaerobic environment. In addition, Blastocytis sp. secretome prediction reveals the presence of potential virulence factors, which could be involved in the degradation of the intestinal epithelium as well as the host immune system bypass.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF
    corecore