62 research outputs found

    Comparison between backscattered TerraSAR signals and simulations from the radar backscattering models IEM, Oh, and Dubois

    Get PDF
    The objective of this paper is to evaluate on bare soils the surface backscattering models IEM, Oh, and Dubois in X-band. This analysis uses a large database of TerraSAR-X images and in situ measurements (soil moisture and surface roughness). Oh's model correctly simulates the radar signal for HH and VV polarizations whereas the simulations performed with the Dubois model show a poor correlation between TerraSAR data and model. The backscattering Integral Equation Model (IEM) model simulates correctly the backscattering coefficient only for rms1.5 cm in using Gaussian function. However, the results are not satisfactory for a use of IEM in the inversion of TerraSAR data. A semi-empirical calibration of IEM was done in X-band. Good agreement was found between the TerraSAR data and the simulations using the calibrated version of the IEM

    Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust

    Get PDF
    Le comportement du signal radar TerraSAR-X en fonction des paramÚtres du sol (rugosité, humidité, structure) a été analysé sur des données 2009 et 2010. Les résultats montrent que la sensibilité du signal radar à l'humidité est plus importante pour des faibles incidences (25° en comparaison à 50°). Pour des fortes valeurs d'humidité, le signal TerraSAR-X est plus sensible à la rugosité du sol à forte incidence (50°). La forte résolution spatiale des données TerraSAR-X (1 m) permet de détecter la croûte de battance à l'échelle intra parcellaire. / Soils play a key role in shaping the environment and in risk assessment. We characterized the soils of bare agricultural plots using TerraSAR-X (9.5 GHz) data acquired in 2009 and 2010. We analyzed the behavior of the TerraSAR-X signal for two configurations, HH-25° and HH-50°, with regard to several soil conditions: moisture content, surface roughness, soil composition and soil-surface structure (slaking crust).The TerraSAR-X signal was more sensitive to soil moisture at a low (25°) incidence angle than at a high incidence angle (50°). For high soil moisture (N25%), the TerraSAR-X signal was more sensitive to soil roughness at a high incidence angle (50°) than at a low incidence angle (25°). The high spatial resolution of the TerraSAR-X data (1 m) enabled the soil composition and slaking crust to be analyzed at the within-plot scale based on the radar signal. The two loamy-soil categories that composed our training plots did not differ sufficiently in their percentages of sand and clay to be discriminated by the X-band radar signal.However, the spatial distribution of slaking crust could be detected when soil moisture variation is observed between soil crusted and soil without crust. Indeed, areas covered by slaking crust could have greater soil moisture and consequently a greater backscattering signal than soils without crust

    Kalideos OSR MiPy : un observatoire pour la recherche et la démonstration des applications de la télédétection à la gestion des territoires

    Get PDF
    International audienceCes derniĂšres annĂ©es, le CESBIO a mis en place un Observatoire Spatial RĂ©gional 'OSR' : un dispositif d'observation couplant mesures de terrain et tĂ©lĂ©dĂ©tection dans le sud-ouest de la France. L'OSR se base sur des acquisitions mensuelles de donnĂ©es satellitaires Ă  rĂ©solution dĂ©camĂ©trique depuis 2002 et sur des sites expĂ©rimentaux lourdement instrumentĂ©s (mesures en continu de flux d'eau et de carbone) Ă  partir de 2004. Ce dispositif a Ă©tĂ© reconnu service d'observation par l'INSU/CNRS en 2007 et site KALIDEOS par le CNES fin 2009 : 'KALIDEOS OSR MiPy'. Le site atelier correspond Ă  une emprise d'image SPOT, soit environ 50x50 km et couvre une grande diversitĂ© de milieux (pĂ©dologie, topographie), d'occupation et d'utilisation des sols, de pratiques et de modalitĂ©s de gestion (agricole, forestiĂšre...) et de conditions climatiques (fort gradient de dĂ©ficits hydriques estivaux). Pour la tĂ©lĂ©dĂ©tection, ce site a servi la prĂ©paration de SMOS, et il soutient maintenant en prioritĂ© Ă  la prĂ©paration des missions VENÎŒS et Sentinel-2. Les aspects radar, imagerie thermique et les approches multi-capteurs se dĂ©veloppent depuis peu. Le traitement du signal, la physique de la mesure et l'amĂ©lioration de la qualitĂ© des donnĂ©es constituent le premier axe de recherche. Au niveau thĂ©matique, le CESBIO a pour prioritĂ© les suivis et les modĂ©lisations des agrosystĂšmes de grandes cultures. L'implication rĂ©cente d'autres partenaires scientifiques ou gestionnaires a permis d'initier des travaux sur d'autres aspects, comme la biodiversitĂ©, l'amĂ©nagement du territoire, le suivi de l'extension urbaine, les risques environnementaux, la santĂ© des forĂȘts, l'enfrichement, la diversitĂ© et la productivitĂ© des prairies. La valorisation des 10 annĂ©es d'archives 2002-2011 dĂ©bute et semble trĂšs pertinente pour la caractĂ©risation en haute et en basse rĂ©solution des consĂ©quences d'annĂ©es climatiques atypiques (2003, 2011) sur les Ă©co-agro-systĂšmes. L'extrapolation des rĂ©sultats obtenus sur ce site atelier Ă  toute la rĂ©gion Midi-PyrĂ©nĂ©es ou Ă  la chaine des PyrĂ©nĂ©es est aussi initiĂ©e

    Evaluation of Multiorbital SAR and Multisensor Optical Data for Empirical Estimation of Rapeseed Biophysical Parameters

    Get PDF
    This article aims to evaluate the potential of multitemporal and multiorbital remote sensing data acquired both in the microwave and optical domain to derive rapeseed biophysical parameters (crop height, dry mass, fresh mass, and plant water content). Dense temporal series of 98 Landsat-8 and Sentinel-2 images were used to derive normalized difference vegetation index (NDVI), green fraction cover (fCover), and green area index (GAI), while backscattering coefficients and radar vegetation index (RVI) were obtained from 231 mages acquired by synthetic aperture radar (SAR) onboard Sentinel-1 platform. Temporal signatures of these remote sensing indicators (RSI) were physically interpreted, compared with each other to ground measurements of biophysical parameters acquired over 14 winter rapeseed fields throughout the 2017–2018 crop season. We introduced new indicators based on the cumulative sum of each RSI that showed a significant improvement in their predictive power. Results particularly reveal the complementarity of SAR and optical data for rapeseed crop monitoring throughout its phenological cycle. They highlight the potential of the newly introduced indicator based on the VH polarized backscatter coefficient to estimate height (R2 = 0.87), plant water content (R2 = 0.77, from flowering to harvest), and fresh mass (R2 = 0.73) and RVI to estimate dry mass (R2 = 0.82). Results also demonstrate that multiorbital SAR data can be merged without significantly degrading the performance of SAR-based relationships while strongly increasing the temporal sampling of the monitoring. These results are promising in view of assimilating optical and SAR data into crop models for finer rapeseed monitoring

    Transitions sol-gel de colloïdes anisotropes sous champs de cisaillement, pression et ondes ultrasonores, caractérisées par diffusion de rayons x aux petits angles in-situ

    Get PDF
    L'objectif de ce travail est de caractériser aux échelles mésoscopiques, l'effet combiné des champs de pression, hydrodynamiques et ultrasonores sur les mécanismes de transition sol-gel de colloïdes anisotropes d'argiles lors de l'ultrafiltration tangentielle. Pour cela, des cellules de filtration ont été développées en intégrant une lame vibrante sollicitée à 20kHz par un générateur ultrasonore. Ces cellules de filtration permettent l'observation in-situ aux échelles nanométriques par diffusion de rayons X aux petits angles (SAXS). Différentes suspensions aqueuses d'argiles ont été étudiées : des argiles naturelles de montmorillonite Wyoming-Na et des argiles synthétiques de Laponite en présence ou non d'un peptisant le tetrasodium diphosphate (Na4P2O7). Par ailleurs l'effet des ultrasons sur le comportement rhéologique de suspensions a aussi été étudié.  L'effet du pré-cisaillement induit par la pompe du circuit de filtration et l'effet des ultrasons, sur les contraintes de cisaillement des suspensions de Laponite ont été mises en évidence. Les deux sollicitations réduisent les niveaux de contrainte et l'effet est plus marqué sur les suspensions avec peptisant (à interaction répulsive dominante) que sur les suspensions sans peptisant (à interaction attractive dominante). Les évolutions temporelles de la structure et de la concentration en colloïdes en fonction de la distance à la membrane ont ainsi été caractérisées sous différentes conditions de filtration et de sollicitations ultrasonores. Deux mécanismes principaux ont été mis en évidence lors de l'application des ultrasons : soit un mécanisme de fracturation ou d'intensification locale de l'écoulement lorsque les colloïdes forment un réseau dense trÚs anisotrope (cas des suspensions de Montmorillonite et de Laponite sans peptisant), soit un mécanisme d'érosion des couches concentrées pour les colloïdes assemblés en structures ouvertes (cas des suspensions de Laponite avec peptisant)

    Use of Statistical Approach Combined with SAR Polarimetric Indices for Surface Moisture Estimation over Bare Agricultural Soil

    No full text
    This paper aims at addressing the potential of polarimetric indices derived from C-band Radarsat-2 images to estimate the surface soil moisture (SSM) over bare agricultural soils. Images have been acquired during the Multispectral Crop Monitoring (MCM) experiment throughout an agricultural season over a study site located in southwestern France. Synchronously with the acquisitions of the 22 SAR images, field measurements of soil descriptors were collected on surface states with contrasting conditions, with SSM levels ranging from 2.4% to 35.3% m3·m−3, surface roughness characterized by standard deviation of roughness heights ranging from 0.5 to 7.9 cm, and soil texture showing fractions of clay, silt and sand between 9%–58%, 22%–77%, and 4%–53%, respectively. The dataset was used to independently train and validate a statistical algorithm (random forest), SSM being estimated using the polarimetric indices and backscatter coefficients derived from the SAR images. Among the SAR signals tested, the performance levels are very uneven, as evidenced by magnitude of correlation (R2) ranging from 0.35 to 0.67. The following polarimetric indices present the best estimates of SSM: the first, second and third elements of the diagonal (T11, T22, and T33), eigenvalues (λ1, λ2, λ3 from Cloude–Pottier decomposition), Shannon entropy, Freeman double-bounce and volume scattering mechanisms, the total scattered power (SPAN), and the backscattering coefficients whatever the polarization state, with correlations greater than 0.6 and with RMSE ranged between 4.8% and 5.3% m3·m−3. These performances remain limited although they are among the best SSM estimates using C-band images, comparable to those obtained with other approaches (i.e., empirical, physical based, or model inversion)

    Assimilation of LAI and Dry Biomass Data From Optical and SAR Images Into an Agro-Meteorological Model to Estimate Soybean Yield

    No full text
    International audienceCrop monitoring at a fine scale and crop yield estimation are critical from an environmental perspective because they provide essential information to combine increased food production and sustainable management of agricultural landscapes. The aim of this article is to estimate soybean yield using an agro-meteorological model controlled by optical and/or synthetic aperture radar (SAR) multipolarized satellite images. Satellite and ground data were collected over seven working farms. Optical and SAR images were acquired by Formosat-2, Spot-4, Spot-5, and Radarsat-2 satellites during the soybean vegetation cycle. A vegetation index (NDVI) was derived from the optical images, and backscattering coefficients and polarimetric indicators were computed from full quad-pol Radarsat-2 images. An angular normalization of SAR data was performed to minimize the incidence angle effects on SAR signals by using the complementarities provided by SAR and optical data. The best results are obtained when the model is controlled by both the leaf area index (LAI) derived from the optical vegetation index modified triangular vegetation index (MTVI2) or from the SAR backscattering coefficient {\sigma _{{^{\circ}}{textsc{vv}}}} ({text{LAI}}_{text{MTVI2}} or ( {text{LAI}}_{\sigma ^{\circ}{textsc{vv}}} ) and the dry biomass (DB) derived from the SAR Pauli matrix T33 ({text{DB}}_{{text{T}}33}) ({text{r}}^{2} gt 0.83) , demonstrating the complementary of optical and SAR data

    Determination of the crop row orientations from Formosat-2 multi-temporal and panchromatic images

    Get PDF
    This paper presents a technique developed for the retrieval of the orientation of crop rows, over anthropic lands dedicated to agriculture in order to further improve estimate of crop production and soil erosion management. Five crop types are considered: wheat, barley, rapeseed, sunflower, corn and hemp. The study is part of the multi-sensor crop-monitoring experiment, conducted in 2010 throughout the agricultural season (MCM'10) over an area located in southwestern France, near Toulouse. The proposed methodology is based on the use of satellite images acquired by Formosat-2, at high spatial resolution in panchromatic and multispectral modes (with spatial resolution of 2 and 8 m, respectively). Orientations are derived and evaluated for each image and for each plot, using directional spatial filters (45 and 135 ) and mathematical morphology algorithms. ''Single-date'' and ''multi-temporal'' approaches are considered. The single-date analyses confirm the good performances of the proposed method, but emphasize the limitation of the approach for estimating the crop row orientation over the whole landscape with only one date. The multi-date analyses allow (1) determining the most suitable agricultural period for the detection of the row orientations, and (2) extending the estimation to the entire footprint of the study area. For the winter crops (wheat, barley and rapeseed), best results are obtained with images acquired just after harvest, when surfaces are covered by stubbles or during the period of deep tillage (0.27 > R2 > 0.99 and 7.15 > RMSE > 43.02 ). For the summer crops (sunflower, corn and hemp), results are strongly crop and date dependents (0 > R2 > 0.96, 10.22 > RMSE > 80 ), with a well-marked impact of flowering, irrigation equipment and/or maximum crop development. Last, the extent of the method to the whole studied zone allows mapping 90% of the crop row orientations (more than 45,000 ha) with an error inferior to 40 , associated to a confidence index ranging from 1 to 5 for each agricultural plot

    Combining high-resolution satellite images and altimetry to estimate the volume of small lakes

    Get PDF
    International audienceAbstract. This study presents an approach to determining the volume of water in small lakes (<100 ha) by combining satellite altimetry data and high-resolution (HR) images. In spite of the strong interest in monitoring surface water resources on a small scale using radar altimetry and satellite imagery, no information is available about the limits of the remote-sensing technologies for small lakes mainly used for irrigation purposes. The lake being studied is located in the south-west of France and is only used for agricultural irrigation purposes. The altimetry satellite data are provided by an RA-2 sensor onboard Envisat, and the high-resolution images (<10 m) are obtained from optical (Formosat-2) and synthetic aperture radar (SAR) antenna (Terrasar-X and Radarsat-2) satellites. The altimetry data (data are obtained every 35 days) and the HR images (77) have been available since 2003 and 2010, respectively. In situ data (for the water levels and volumes) going back to 2003 have been provided by the manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches (HRBV and ABV) are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2ABV = 0.98, RMSEABV = 5%, R2HRBV = 0.90, and RMSEABV = 7.4%), assuming a time-varying triangular shape for the shore slope of the lake (this form is well adapted since it implies a difference inferior to 2% between the theoretical volume of the lake and the one estimated from bathymetry). The third method (AHRBVC) combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2AHRBVC = 0.98) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to monitor small lakes and reservoirs for agricultural and irrigation applications

    Use of Sentinel-1 Multi-Configuration and Multi-Temporal Series for Monitoring Parameters of Winter Wheat

    No full text
    The present study aims to investigate the potential of multi-configuration Sentinel-1 (S-1) synthetic aperture radar (SAR) images for characterizing four wheat parameters: total fresh mass (TFM), total dry mass (TDM), plant heights (He), and water content (WC). Because they are almost independent on the weather conditions, we have chosen to use only SAR. Samples of wheat parameters were collected over seven fields (three irrigated and four rainfed fields) in Southwestern France. We first analyzed the temporal behaviors of wheat parameters (He, TDM, TFM and WC) between February and June 2016. Then, the temporal profiles of the S-1 backscattering coefficients (VV, VH), the difference (VH − VV), the sum of the polarizations (VH + VV) and their cumulative values are analyzed for two orbits (30 and 132) during the wheat-growing season (from January to July 2016). After that, S-1 signals were statistically compared with all crop parameters considering the impact of pass orbit, irrigation and two vegetative periods in order to identify the best S-1 configuration for estimating crop parameters. Interesting S-1 backscattering behaviors were observed with the various wheat parameters after separating irrigation impacts and vegetative periods. For the orbit 30 (mean incidence angle of 33.6°); results show that the best S-1 configurations (with coefficient of determination (R2) &gt; 0.7) were obtained using the VV and VH + VV as a function of the He, TDM and WC, over irrigated fields and during the second vegetative period. For the orbit 132 (mean incidence angle of 43.4°), the highest dynamic sensitivities (R2 &gt; 0.8) were observed for the VV and VH + VV configurations with He, TDM and TFM over irrigated fields during the first vegetative period. Overall, the sensitivity of S-1 data to wheat variables depended on the radar configuration (orbits and polarizations), the vegetative periods and was often better over irrigated fields in comparison with rainfed ones. Significant improvements of the determination coefficients were obtained when the cumulative (VH + VV) index was considered for He (RÂČ &gt; 0.9), TDM (RÂČ &gt; 0.9) and TFM (RÂČ &gt; 0.75) for irrigated fields, all along the crop cycle. The estimate of WC was more limited (RÂČ &gt; 0.6) and remained limited to the second period of the vegetation cycle (from flowering onwards). Whatever parameters were considered, the relative errors never exceeded 23%. This study has shown the importance of considering the agricultural practices (irrigation) and vegetative periods to effectively monitor some wheat parameters with S-1 data
    • 

    corecore