88 research outputs found

    Control over Multi-Scale Self-Organization-Based Processes under the Extreme Tribological Conditions of Cutting through the Application of Complex Adaptive Surface-Engineered Systems

    Get PDF
    This paper features a comprehensive analysis of various multiscale selforganization processes that occur during cutting. A thorough study of entropy production during friction has uncovered several channels of its reduction that can be achieved by various selforganization processes. These processes are (1) self-organization during physical vapor deposition PVD coating deposition on the cutting tool substrates; (2) tribofilm formation caused by interactions with the environment during operation, which consist of the following compounds: thermal barriers; Magnéli phase tribo-oxides with metallic properties at elevated temperatures, tribo-oxides that transform into a liquid phase at operating temperatures, and mixed action tribo-oxides that serve as thermal barriers/lubricants, and (3) multiscale selforganization processes that occur on the surface of the tool during cutting, which include chip formation, the generation of adhesive layers, and the buildup edge formation. In-depth knowledge of these processes can be used to significantly increase the wear resistance of the coated cutting tools. This can be achieved by the application of the latest generation of complex adaptive surface-engineered systems represented by several state-of-the-art adaptive nano-multilayer PVD coatings, as well as high entropy alloy coatings (HEAC)

    Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials

    Get PDF
    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/ dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment

    A novel method of assessing and predicting coated cutting tool wear during Inconel DA 718 turning

    Get PDF
    This work investigates the wear characteristics of two different coating systems deposited on cemented carbide tools and used in the finish turning of an Inconel DA718 aerospace alloy. The two coatings were: (a) a new nanocomposite multilayer Ti25Al65Cr10 N/Ti20Al52Cr22Si8N PVD coating, and (b) an AlTiN benchmark coating. Four different cutting speeds (60, 80, 100 and 120 m/min) were employed during this study. Wear behavior was characterized using three-dimensional volumetric wear progression, as well as flank wear progression, wear mechanism evaluation, and cutting force analysis. A tool life predictive model was created for this process based on both 3D and flank wear patterns. The tool with the nanocomposite coating outperformed the AlTiN benchmark coating under higher speed conditions, and both tools performed best under a surface speed of 80 m/min. The primary wear mechanisms responsible for the performance of these coatings differ in relation to the adaptive behavior of the nanocomposite coating. In addition, tool wear predictions modeled under different cutting conditions demonstrated an estimated accuracy of 93%

    Dynamical Principles of Emotion-Cognition Interaction: Mathematical Images of Mental Disorders

    Get PDF
    The key contribution of this work is to introduce a mathematical framework to understand self-organized dynamics in the brain that can explain certain aspects of itinerant behavior. Specifically, we introduce a model based upon the coupling of generalized Lotka-Volterra systems. This coupling is based upon competition for common resources. The system can be regarded as a normal or canonical form for any distributed system that shows self-organized dynamics that entail winnerless competition. Crucially, we will show that some of the fundamental instabilities that arise in these coupled systems are remarkably similar to endogenous activity seen in the brain (using EEG and fMRI). Furthermore, by changing a small subset of the system's parameters we can produce bifurcations and metastable sequential dynamics changing, which bear a remarkable similarity to pathological brain states seen in psychiatry. In what follows, we will consider the coupling of two macroscopic modes of brain activity, which, in a purely descriptive fashion, we will label as cognitive and emotional modes. Our aim is to examine the dynamical structures that emerge when coupling these two modes and relate them tentatively to brain activity in normal and non-normal states

    Mesenchymal Stromal Cells Engage Complement and Complement Receptor Bearing Innate Effector Cells to Modulate Immune Responses

    Get PDF
    Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells

    Adaptive Developmental Delay in Chagas Disease Vectors: An Evolutionary Ecology Approach

    Get PDF
    The developmental time of vector insects is important to their population dynamics, evolutionary biology, epidemiology of the diseases they transmit, and to their responses to global climatic change. In various triatomine species vectors of Chagas disease (Triatominae, Reduviidae), a delay in the molt of a small proportion of individuals has been observed, and from an evolutionary ecology approach, we propose the hypothesis that the developmental delay is an adaptation to environmental stochasticity through a spreading of risk (bet-hedging) diapause strategy. We confirmed, by means of a survey among specialists, the existence of the developmental delay in triatomines. Statistical descriptions of the developmental time of 11 species of triatomines showed some degree of bi-modality in nine of them. We predicted by means of an optimization model which genotype, coding for a given frequency of developmental diapause, is expected to evolve. We identified a series of parameters that can be measured in the field and in the laboratory to test the hypothesis of an optimal diapause frequency. We also discuss the importance of these findings for triatomines in terms of global climatic change and epidemiological consequences such as their resistance to insecticides

    Caenorhabditis elegans N-glycan Core ÎČ-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2

    Get PDF
    The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a GalÎČ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the GalÎČ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms

    Partners No More: Relational Transformation and the Turn to Litigation in Two Conservationist Organizations

    Get PDF
    The rise in litigation against administrative bodies by environmental and other political interest groups worldwide has been explained predominantly through the liberalization of standing doctrines. Under this explanation, termed here the floodgate model, restrictive standing rules have dammed the flow of suits that groups were otherwise ready and eager to pursue. I examine this hypothesis by analyzing processes of institutional transformation in two conservationist organizations: the Sierra Club in the United States and the Society for the Protection of Nature in Israel (SPNI). Rather than an eagerness to embrace newly available litigation opportunities, as the floodgate model would predict, the groups\u27 history reveals a gradual process of transformation marked by internal, largely intergenerational divisions between those who abhorred conflict with state institutions and those who saw such conflict as not only appropriate but necessary to the mission of the group. Furthermore, in contrast to the pluralist interactions that the floodgate model imagines, both groups\u27 relations with pertinent agencies in earlier eras better accorded with the partnership-based corporatist paradigm. Sociolegal research has long indicated the importance of relational distance to the transformation of interpersonal disputes. I argue that, at the group level as well, the presence or absence of a (national) partnership-centered relationship determines propensities to bring political issues to court. As such, well beyond change in groups\u27 legal capacity and resources, current increases in levels of political litigation suggest more fundamental transformations in the structure and meaning of relations between citizen groups and the state
    • 

    corecore