450 research outputs found

    The creep and stress relaxation behavior of silver bearing copper wire

    Get PDF
    Creep and stress-relaxation experiments were performed on silverless and silver bearing copper in the temperature range 73F to 250F. The creep experiments were conducted at constant load and temperature, the stress-relaxation tests at constant total strain and temperature for a total time period of 1000 hours. The effect of silver addition of up to 0.2 percent w/o (60oz per ton) on the creep and stress-relaxation behavior of spectrographically pure copper (99.999+ Cu) as well as on that of tough pitch and oxygen free coppers of lesser purity was studied. Spectrographically pure copper was found to be much more susceptible to creep deformation than commercial copper containing small amounts of impurities. The high purity copper appears to fail by separation of the grain boundaries with incipient microcrack formation. These microcracks act as stress concentrations, thus accelerating the creep rate. Oxide particles, present in tough pitch copper, act as stress raisers and cause this material to have a lower resistance to creep and stress relaxation than oxygen free copper containing about the same level of other impurities (with the exception of oxygen). The addition of silver to either of these two conductor materials raises the recrystallization temperature and therefore results in material having a much finer and more uniform grain structure. This results in improved resistance to creep and stress relaxation and inhibits the formation of microcracks by grain boundary separation. Creep and stress-relaxation data are presented at two stress levels and three temperatures for each of the materials studied, that will permit designers to formulate appropriate time, temperature, stress-strain relations. Silver addition in excess of 25oz per ton (0.09 w/o%) produces further improvement in resistance to creep and stress relaxation. Sufficient strengthening is achieved, however, with the 25oz per ton addition in the temperature range of interest (73F to 250F) to justify the use of this material as a suitable and economical replacement for tough pitch copper in miniaturized applications where long time dimensional stability is important

    Binding Small Molecules to a cis-Dicarbonyl 99^{\text{99}}TcITc^{\text{I}}-PNP Complex via Metal–Ligand Cooperativity

    Full text link
    Metal–ligand cooperativity is a powerful tool for the activation of various bonds but has rarely, if ever, been studied with the radioactive transition metal 99^{\text{99}}Tc. In this work, we explore this bond activation pathway with the dearomatized PNP complex cis-[99TcI(PyrPNPtBu*)(CO)2] (4), which was synthesized by deprotonation of trans-[99TcI(PyrPNPtBu)(CO)2Cl] with KOtBu. Analogous to its rhenium congener, the dearomatized compound reacts with CO2 to form the carboxy complex cis-[99TcI(PyrPNPtBu–COO)(CO)2] and with H2 to form the mono-hydride complex cis-[99TcI(PyrPNPtBu)(CO)2H] (7). Substrates with weakly acidic protons are deprotonated by the Brønsted basic pincer backbone of 4, yielding a variety of intriguing complexes. Reactions with terminal alkynes enable the isolation of acetylide complexes. The deprotonation of an imidazolium salt results in the in situ formation and coordination of a carbene ligand. Furthermore, a study with heterocyclic substrates allowed for the isolation of pyrrolide and pyrazolide complexes, which is uncommon for Tc. The spectroscopic analyses and their solid-state structures are reported

    The future of human nature: a symposium on the promises and challenges of the revolutions in genomics and computer science, April 10, 11, and 12, 2003

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's Symposium on the Promises and Challenges of the Revolutions in Genomics and Computer Science took place during April 10, 11, and 12, 2003. Co-organized by Charles DeLisi and Kenneth Lewes; sponsored by Boston University, the Frederick S. Pardee Center for the Study of the Longer-Range Future.This conference focused on scientific and technological advances in genetics, computer science, and their convergence during the next 35 to 250 years. In particular, it focused on directed evolution, the futures it allows, the shape of society in those futures, and the robustness of human nature against technological change at the level of individuals, groups, and societies. It is taken as a premise that biotechnology and computer science will mature and will reinforce one another. During the period of interest, human cloning, germ-line genetic engineering, and an array of reproductive technologies will become feasible and safe. Early in this period, we can reasonably expect the processing power of a laptop computer to exceed the collective processing power of every human brain on the planet; later in the period human/machine interfaces will begin to emerge. Whether such technologies will take hold is not known. But if they do, human evolution is likely to proceed at a greatly accelerated rate; human nature as we know it may change markedly, if it does not disappear altogether, and new intelligent species may well be created

    In the land of becoming: the gendered experience of communication doctoral students

    Get PDF
    This article investigates two aspects of the experience of communications graduate students. It examines their relations with their departments and the academic staff most close to their work (supervisors and mentors), and the existence and impact of other factors, such as age and dependants, on the duration of their studies. Despite the differences of the educational systems and socio-economic factors between countries, the findings show that the experience of the communications doctoral student is gender specific. To that a number of factors may play an important role such as academic environment and personal/private life commitments

    Infrastructural Speculations: Tactics for Designing and Interrogating Lifeworlds

    Get PDF
    This paper introduces “infrastructural speculations,” an orientation toward speculative design that considers the complex and long-lived relationships of technologies with broader systems, beyond moments of immediate invention and design. As modes of speculation are increasingly used to interrogate questions of broad societal concern, it is pertinent to develop an orientation that foregrounds the “lifeworld” of artifacts—the social, perceptual, and political environment in which they exist. While speculative designs often imply a lifeworld, infrastructural speculations place lifeworlds at the center of design concern, calling attention to the cultural, regulatory, environmental, and repair conditions that enable and surround particular future visions. By articulating connections and affinities between speculative design and infrastructure studies research, we contribute a set of design tactics for producing infrastructural speculations. These tactics help design researchers interrogate the complex and ongoing entanglements among technologies, institutions, practices, and systems of power when gauging the stakes of alternate lifeworlds

    The future of human nature: a symposium on the promises and challenges of the revolutions in genomics and computer science, April 10, 11, and 12, 2003

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's Symposium on the Promises and Challenges of the Revolutions in Genomics and Computer Science took place during April 10, 11, and 12, 2003. Co-organized by Charles DeLisi and Kenneth Lewes; sponsored by Boston University, the Frederick S. Pardee Center for the Study of the Longer-Range Future.This conference focused on scientific and technological advances in genetics, computer science, and their convergence during the next 35 to 250 years. In particular, it focused on directed evolution, the futures it allows, the shape of society in those futures, and the robustness of human nature against technological change at the level of individuals, groups, and societies. It is taken as a premise that biotechnology and computer science will mature and will reinforce one another. During the period of interest, human cloning, germ-line genetic engineering, and an array of reproductive technologies will become feasible and safe. Early in this period, we can reasonably expect the processing power of a laptop computer to exceed the collective processing power of every human brain on the planet; later in the period human/machine interfaces will begin to emerge. Whether such technologies will take hold is not known. But if they do, human evolution is likely to proceed at a greatly accelerated rate; human nature as we know it may change markedly, if it does not disappear altogether, and new intelligent species may well be created

    Correlation between crystal purity and the charge density wave in 1T-VSe2

    Get PDF
    We examine the charge density wave (CDW) properties of 1T-VSe2 crystals grown by chemical vapor transport (CVT) under varying conditions. Specifically, we find that upon lowering the growth temperature (Tg < 630\u25e6C), there is a significant increase in both the CDW transition temperature and the residual resistance ratio (RRR) obtained from electrical transport measurements. Using x-ray photoelectron spectroscopy, we correlate the observed CDW properties with stoichiometry and the nature of defects. In addition, we have optimized a method to grow ultrahigh-purity 1T-VSe2 crystals with a CDW transition temperature TCDW = (112.7 \ub1 0.8) K and maximum residual resistance ratio RRR 48 49, which is the highest reported thus far. This work highlights the sensitivity of the CDW in 1T-VSe2 to defects and overall stoichiometry and the importance of controlling the crystal growth conditions of strongly correlated transition metal dichalcogenides

    In silico proteomic and phylogenetic analysis of the outer membrane protein repertoire of gastric Helicobacter species

    Get PDF
    Helicobacter (H.) pylori is an important risk factor for gastric malignancies worldwide. Its outer membrane proteome takes an important role in colonization of the human gastric mucosa. However, in zoonotic non-H. pylori helicobacters (NHPHs) also associated with human gastric disease, the composition of the outer membrane (OM) proteome and its relative contribution to disease remain largely unknown. By means of a comprehensive survey of the diversity and distribution of predicted outer membrane proteins (OMPs) identified in all known gastric Helicobacter species with fully annotated genome sequences, we found genus- and species-specific families known or thought to be implicated in virulence. Hop adhesins, part of the Helicobacter-specific family 13 (Hop, Hor and Horn) were restricted to the gastric species H. pylori, H. cetorum and H. acinonychis. Hof proteins (family 33) were putative adhesins with predicted Occ- or MOMP-family like 18-stranded beta-barrels. They were found to be widespread amongst all gastric Helicobacter species only sporadically detected in enterohepatic Helicobacter species. These latter are other members within the genus Helicobacter, although ecologically and genetically distinct. LpxR, a lipopolysaccharide remodeling factor, was also detected in all gastric Helicobacter species but lacking as well from the enterohepatic species H. cinaedi, H. equorum and H. hepaticus. In conclusion, our systemic survey of Helicobacter OMPs points to species and infection-site specific members that are interesting candidates for future virulence and colonization studies.Peer reviewe
    • …
    corecore