1,610 research outputs found

    Factors affecting continuation of clean intermittent catheterisation in people with multiple sclerosis: results of the COSMOS mixed-methods study

    Get PDF
    Background:  Clean intermittent catheterisation (CIC) is often recommended for people with multiple sclerosis (MS).  Objective:  To determine the variables that affect continuation or discontinuation of the use of CIC.  Methods:  A three-part mixed-method study (prospective longitudinal cohort (n = 56), longitudinal qualitative interviews (n = 20) and retrospective survey (n = 456)) was undertaken, which identified the variables that influenced CIC continuation/discontinuation. The potential explanatory variables investigated in each study were the individual’s age, gender, social circumstances, number of urinary tract infections, bladder symptoms, presence of co-morbidity, stage of multiple sclerosis and years since diagnosis, as well as CIC teaching method and intensity.  Results:  For some people with MS the prospect of undertaking CIC is difficult and may take a period of time to accept before beginning the process of using CIC. Ongoing support from clinicians, support at home and a perceived improvement in symptoms such as nocturia were positive predictors of continuation. In many cases, the development of a urinary tract infection during the early stages of CIC use had a significant detrimental impact on continuation.  Conclusion:  Procedures for reducing the incidence of urinary tract infection during the learning period (i.e. when being taught and becoming competent) should be considered, as well as the development of a tool to aid identification of a person’s readiness to try CIC

    GeneMill: A 21st century platform for innovation

    Get PDF
    GeneMill officially launched on 4th February 2016 and is an open access academic facility located at The University of Liverpool that has been established for the high-throughput construction and testing of synthetic DNA constructs. GeneMill provides end-to-end design, construction and phenotypic characterization of small to large gene constructs or genetic circuits/pathways for academic and industrial applications. Thus, GeneMill is equipping the scientific community with easy access to the validated tools required to explore the possibilities of Synthetic Biology

    Testing for Network and Spatial Autocorrelation

    Full text link
    Testing for dependence has been a well-established component of spatial statistical analyses for decades. In particular, several popular test statistics have desirable properties for testing for the presence of spatial autocorrelation in continuous variables. In this paper we propose two contributions to the literature on tests for autocorrelation. First, we propose a new test for autocorrelation in categorical variables. While some methods currently exist for assessing spatial autocorrelation in categorical variables, the most popular method is unwieldy, somewhat ad hoc, and fails to provide grounds for a single omnibus test. Second, we discuss the importance of testing for autocorrelation in data sampled from the nodes of a network, motivated by social network applications. We demonstrate that our proposed statistic for categorical variables can both be used in the spatial and network setting

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    Explosive Nucleosynthesis: What we learned and what we still do not understand

    Full text link
    This review touches on historical aspects, going back to the early days of nuclear astrophysics, initiated by B2^2FH and Cameron, discusses (i) the required nuclear input from reaction rates and decay properties up to the nuclear equation of state, continues (ii) with the tools to perform nucleosynthesis calculations and (iii) early parametrized nucleosynthesis studies, before (iv) reliable stellar models became available for the late stages of stellar evolution. It passes then through (v) explosive environments from core-collapse supernovae to explosive events in binary systems (including type Ia supernovae and compact binary mergers), and finally (vi) discusses the role of all these nucleosynthesis production sites in the evolution of galaxies. The focus is put on the comparison of early ideas and present, very recent, understanding.Comment: 11 pages, to appear in Springer Proceedings in Physics (Proc. of Intl. Conf. "Nuclei in the Cosmos XV", LNGS Assergi, Italy, June 2018

    Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

    Full text link
    We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.Comment: 28 pages, 19 figure

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
    corecore