14 research outputs found

    Equilibrium climate sensitivity estimated by equilibrating climate models

    Get PDF
    The methods to quantify equilibrium climate sensitivity are still debated. We collect millennial‐length simulations of coupled climate models and show that the global mean equilibrium warming is higher than those obtained using extrapolation methods from shorter simulations. Specifically, 27 simulations with 15 climate models forced with a range of CO2 concentrations show a median 17% larger equilibrium warming than estimated from the first 150 years of the simulations. The spatial patterns of radiative feedbacks change continuously, in most regions reducing their tendency to stabilizing the climate. In the equatorial Pacific, however, feedbacks become more stabilizing with time. The global feedback evolution is initially dominated by the tropics, with eventual substantial contributions from the mid‐latitudes. Time‐dependent feedbacks underscore the need of a measure of climate sensitivity that accounts for the degree of equilibration, so that models, observations, and paleo proxies can be adequately compared and aggregated to estimate future warming. Key points 27 simulations of 15 general circulation models are integrated to near equilibrium All models simulate a higher equilibrium warming than predicted by using extrapolation methods Tropics and mid‐latitudes dominate the change of the feedback parameter on different timescales on millennial timescale

    The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    No full text
    International audienceA lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed

    Mars clouds simulation for the optical depth sensor (ODS)

    No full text
    A small and sophisticated optical depth sensor (ODS) has been selected in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. ODS was built to carry out the opacity due to the Martian dust and to characterize the high altitude clouds at twilight on Mars. Dust and clouds are primary elements for studying the interactions of solar radiation with the Mars atmosphere and surface and their influence on the radiation balance. In addition, dust lifted by storms are the unique condensation nuclei available at the Mars atmosphere. Therefore a capability of modeling the dust and clouds is vital for understanding of meteorology and climate on Mars. For the clouds detection, the index colour (CI) is used, defined as the ratio between the scattered light at red and blue wavelengths. If a cloud is present during twilight, then a peak must be observed in the CI. The opacity due to the Martian dust can be detected by comparing the sunlight scattered at zenith and direct sunlight. In order to retrieve the dust and cloud properties, a radiative transfer three- dimensional model in spherical geometry must be used. In this presentation, we will show the principle of the instrument, we will describe the procedure which is used in order to retrieve the dust and cloud physical properties and we will finally present some results of field campaigns made in terrestrial environment

    Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    Get PDF
    International audienceA small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds

    Solar Irradiance from 165 to 400 nm in 2008 and UV Variations in Three Spectral Bands During Solar Cycle 24

    No full text
    International audienceAccurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth’s atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth’s atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed

    The Measurement of the Solar Spectral Irradiance Variability during the Solar Cycle 24 using SOLAR/SOLSPEC on ISS

    No full text
    International audienceSince April 2008, SOLAR/SOLSPEC measures the Solar Spectral Irradiance (SSI) from 166 nm to 3088 nm. The instrument is a part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station. As the SSI is a key input for the validation of solar physics models, together with playing a role in the climate system and photochemistry of the Earth atmosphere, SOLAR/SOLSPEC spectral measurements becomes important. In this study, the in-flight operations and performances of the instru- ment -including the engineering corrections- will be presented for seven years of the SOLAR mission. Following an accurate absolute calibration, the SSI variability in the UV as measured by SOLAR/SOLSPEC in the course of the solar cycle 24 will be presented and compared to other instruments. The accuracy of these measurements will be also discussed here

    8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    No full text
    International audienceAccurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed

    SOLAR/SOLSPEC: Scientific Objectives, Instrument Performance and Its Absolute Calibration Using a Blackbody as Primary Standard Source

    No full text
    International audienceSOLAR is a set of three solar instruments measuring the total and spectral absolute irradiance from 16 nm to 3080 nm for solar, atmospheric and climatology physics. It is an external payload for the COLUMBUS laboratory launched on 7 February 2008. The mission’s primary objective is the measurement of the solar irradiance with the highest possible accuracy, and its variability using the following instruments: SOL-ACES (SOLar Auto-Calibrating EUV/UV Spectrophotometers) consists of four grazing incidence planar gratings measuring from 16 nm to 220 nm; SOLSPEC (SOLar SPECtrum) consists of three double gratings spectrometers, covering the range 165 nm to 3080 nm; and SOVIM (SOlar Variability Irradiance Monitor) is combining two types of absolute radiometers and three-channel filter – radiometers. SOLSPEC and SOL-ACES have been calibrated by primary standard radiation sources of the Physikalisch-Technische Bundesanstalt (PTB). Below we describe SOLSPEC, and its performance

    SOLAR/SOLSPEC mission on ISS: In-flight performances for SSI measurements in the UV

    No full text
    International audienceThe SOLar SPECtrum (SOLSPEC) experiment is part of the Solar Monitoring Observatory (SOLAR) payload, and has been externally mounted on the Columbus module of the International Space Station (ISS) since 2008. SOLAR/SOLSPEC combines three absolutely calibrated double monochromators with concave gratings for measuring the solar spectral irradiance (SSI) from 166 nm to 3088 nm. This physical quantity is a key input for studies of climatology, planetary atmospheres, and solar physics.Aims. A general description of the instrument is given, including in-flight operations and performance of the ultraviolet (UV) channel from 175 nm to 340 nm.Methods. We developed a range of processing and correction methods, which are described in detail. For example, methods for correcting thermal behavior effects, instrument linearity, and especially the accuracy of the wavelength and absolute radiometric scales have been validated by modeling the standard uncertainties.Results. The deliverable is a quiet Sun UV reference solar spectrum as measured by SOLAR/SOLSPEC during the minimum of solar activity prior to cycle 241. Comparisons with other instruments measuring SSI are also presented

    Arctic aerosol and cloud measurements performed during IAOOS 2014

    No full text
    International audienceBetter understanding of atmosphere-ice-ocean interactions and in particular of the role of aerosols and clouds in this Earth system is of prime importance in the Arctic. In the frame of the French IAOOS Equipex project, a new observational network is planned to be developed for ocean-ice-atmosphere climate survey over the Arctic, starting in 2015, to complement satellite observations. Eye-safe lidar measurements will allow us to profile aerosols and clouds for the atmospheric part, with the objective to perform regular measurements and characterize the vertical structure and optical properties. Radiation and meteorological parameters will be measured at the surface. A first buoy has been prototyped and deployed in April 2014 at the Barneo site set by the Russian teams at the North Pole. Measurements with the first autonomous backscatter lidar ever deployed in the arctic have been taken from April to end of November 2014 before the buoy was lost. Four profiles a day have been performed allowing a good sampling of cloud variability. Observations have shown that the occurrence of low level clouds was higher than 90% during summer. The project is presented, instrument performance is described and first results are discussed
    corecore