363 research outputs found

    Initial data for black hole-neutron star binaries: a flexible, high-accuracy spectral method

    Get PDF
    We present a new numerical scheme to solve the initial value problem for black hole-neutron star binaries. This method takes advantage of the flexibility and fast convergence of a multidomain spectral representation of the initial data to construct high-accuracy solutions at a relatively low computational cost. We provide convergence tests of the method for both isolated neutron stars and irrotational binaries. In the second case, we show that we can resolve the small inconsistencies that are part of the quasi-equilibrium formulation, and that these inconsistencies are significantly smaller than observed in previous works. The possibility of generating a wide variety of initial data is also demonstrated through two new configurations inspired by results from binary black holes. First, we show that choosing a modified Kerr-Schild conformal metric instead of a flat conformal metric allows for the construction of quasi-equilibrium binaries with a spinning black hole. Second, we construct binaries in low-eccentricity orbits, which are a better approximation to astrophysical binaries than quasi-equilibrium systems.Comment: 19 pages, 11 figures, Modified to match final PRD versio

    Spin effects on neutron star fundamental-mode dynamical tides: phenomenology and comparison to numerical simulations

    Get PDF
    Gravitational waves from neutron star binary inspirals contain information on strongly-interacting matter in unexplored, extreme regimes. Extracting this requires robust theoretical models of the signatures of matter in the gravitational-wave signals due to spin and tidal effects. In fact, spins can have a significant impact on the tidal excitation of the quasi-normal modes of a neutron star, which is not included in current state-of-the-art waveform models. We develop a simple approximate description that accounts for the Coriolis effect of spin on the tidal excitation of the neutron star's quadrupolar and octupolar fundamental quasi-normal modes and incorporate it in the SEOBNRv4T waveform model. We show that the Coriolis effect introduces only one new interaction term in an effective action in the co-rotating frame of the star, and fix the coefficient by considering the spin-induced shift in the resonance frequencies that has been computed numerically for the mode frequencies of rotating neutron stars in the literature. We investigate the impact of relativistic corrections due to the gravitational redshift and frame-dragging effects, and identify important directions where more detailed theoretical developments are needed in the future. Comparisons of our new model to numerical relativity simulations of double neutron star and neutron star-black hole binaries show improved consistency in the agreement compared to current models used in data analysis

    A mineralogical and microstructural study of 7 eucrites (A-881394, Y-791195, Y-981617, Y-790266, Y-791186, Y-792510, Y-793591).

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月29日(木) 国立国語研究所 2階講

    High occurrence of new particle formation events at the Maïdo high-altitude observatory (2150 m), Réunion (Indian Ocean)

    Get PDF
    This study aims to report and characterise the frequent new particle formation (NPF) events observed at the Maïdo observatory, Réunion, a Southern Hemisphere site located at 2150 m (a.s.l.) and surrounded by the Indian Ocean. From May 2014 to December 2015, continuous aerosol measurements were made using both a differential mobility particle sizer (DMPS) and an air ion spectrometer (AIS) to characterise the NPF events down to the lowest particle-size scale. Carbon monoxide (CO) and black carbon (BC) concentrations were monitored, as well as meteorological parameters, in order to identify the conditions that were favourable to the occurrence of nucleation in this specific environment. We point out that the annual NPF frequency average (65 %) is one of the highest reported so far. Monthly averages show a bimodal variation in the NPF frequency, with a maximum observed during transition periods (autumn and spring). A high yearly median particle growth rate (GR) of 15.16 nm h−1 is also measured showing a bimodal seasonal variation with maxima observed in July and November. Yearly medians of 2 and 12 nm particle formation rates (J2 and J12) are 0.858 and 0.508 cm−3 s−1, respectively, with a seasonal variation showing a maximum during winter, that correspond to low temperature and RH typical of the dry season, but also to high BC concentrations. We show that the condensation sink exceeds a threshold value (1.04×10−3 s−1) with a similar seasonal variation than the one of the NPF event frequency, suggesting that the occurrence of the NPF process might be determined by the availability of condensable vapours, which are likely to be transported together with pre-existing particles from lower altitudes.</p

    Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for Feshbach resonance

    Full text link
    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behavior of solutions at the origin. Contrary to usual transformations, these ``non-conservative'' transformations allow, in the presence of thresholds, the construction of potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of Feshbach-resonance phenomenon.Comment: 10 pages, 2 figure

    Axisymmetric Hydrodynamics in Numerical Relativity Using a Multipatch Method

    Get PDF
    We describe a method of implementing the axisymmetric evolution of general-relativistic hydrodynamics and magnetohydrodynamics through modification of a multipatch grid scheme. In order to ease the computational requirements required to evolve the post-merger phase of systems involving binary compact massive objects in numerical relativity, it is often beneficial to take advantage of these system's tendency to rapidly settle into states that are nearly axisymmetric, allowing for 2D evolution of secular timescales. We implement this scheme in the Spectral Einstein Code (SpEC) and show the results of application of this method to four test systems including viscosity, magnetic fields, and neutrino radiation transport. Our results show that this method can be used to quickly allow already existing 3D infrastructure that makes use of local coordinate system transformations to be made to run in axisymmetric 2D with comparable results

    On Deterministic Sketching and Streaming for Sparse Recovery and Norm Estimation

    Full text link
    We study classic streaming and sparse recovery problems using deterministic linear sketches, including l1/l1 and linf/l1 sparse recovery problems (the latter also being known as l1-heavy hitters), norm estimation, and approximate inner product. We focus on devising a fixed matrix A in R^{m x n} and a deterministic recovery/estimation procedure which work for all possible input vectors simultaneously. Our results improve upon existing work, the following being our main contributions: * A proof that linf/l1 sparse recovery and inner product estimation are equivalent, and that incoherent matrices can be used to solve both problems. Our upper bound for the number of measurements is m=O(eps^{-2}*min{log n, (log n / log(1/eps))^2}). We can also obtain fast sketching and recovery algorithms by making use of the Fast Johnson-Lindenstrauss transform. Both our running times and number of measurements improve upon previous work. We can also obtain better error guarantees than previous work in terms of a smaller tail of the input vector. * A new lower bound for the number of linear measurements required to solve l1/l1 sparse recovery. We show Omega(k/eps^2 + klog(n/k)/eps) measurements are required to recover an x' with |x - x'|_1 <= (1+eps)|x_{tail(k)}|_1, where x_{tail(k)} is x projected onto all but its largest k coordinates in magnitude. * A tight bound of m = Theta(eps^{-2}log(eps^2 n)) on the number of measurements required to solve deterministic norm estimation, i.e., to recover |x|_2 +/- eps|x|_1. For all the problems we study, tight bounds are already known for the randomized complexity from previous work, except in the case of l1/l1 sparse recovery, where a nearly tight bound is known. Our work thus aims to study the deterministic complexities of these problems

    Restricted Isometries for Partial Random Circulant Matrices

    Get PDF
    In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a data-acquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the ssth order restricted isometry constant is small when the number mm of samples satisfies m(slogn)3/2m \gtrsim (s \log n)^{3/2}, where nn is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling

    High-accuracy waveforms for black hole-neutron star systems with spinning black holes

    Get PDF
    The availability of accurate numerical waveforms is an important requirement for the creation and calibration of reliable waveform models for gravitational wave astrophysics. For black hole-neutron star binaries, very few accurate waveforms are however publicly available. Most recent models are calibrated to a large number of older simulations with good parameter space coverage for low-spin non-precessing binaries but limited accuracy, and a much smaller number of longer, more recent simulations limited to non-spinning black holes. In this paper, we present long, accurate numerical waveforms for three new systems that include rapidly spinning black holes, and one precessing configuration. We study in detail the accuracy of the simulations, and in particular perform for the first time in the context of BHNS binaries a detailed comparison of waveform extrapolation methods to the results of Cauchy Characteristic Extraction. The new waveforms have 0.990.99) for binaries seen face-on. For edge-on observations, particularly for precessing systems, disagreements between models and simulations increase, and models that include precession and/or higher-order modes start to perform better than BHNS models that currently lack these features
    corecore