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We describe a method of implementing the axisymmetric evolution of general-relativistic hydrody-
namics and magnetohydrodynamics through modification of a multipatch grid scheme. In order to
ease the computational requirements required to evolve the post-merger phase of systems involving
binary compact massive objects in numerical relativity, it is often beneficial to take advantage of
these system’s tendency to rapidly settle into states that are nearly axisymmetric, allowing for 2D
evolution of secular timescales. We implement this scheme in the Spectral Einstein Code (SpEC)
and show the results of application of this method to four test systems including viscosity, magnetic
fields, and neutrino radiation transport. Our results show that this method can be used to quickly
allow already existing 3D infrastructure that makes use of local coordinate system transformations
to be made to run in axisymmetric 2D with comparable results.

I. INTRODUCTION

The detection of the gravitational wave signal result-
ing from the merger binary black hole systems by the
LIGO and VIRGO collaborations [1–7] along with the
detection of simultaneous electromagnetic and gravita-
tional wave signals from binary neutron star mergers [8–
11], and the corresponding need for theoretical predic-
tions with which to compare them, has given renewed
urgency to the goal of accurately modeling these systems
throughout the merger process. For systems involving at
least one neutron star, it is the post-merger state that is
primarily responsible for the observable electromagnetic
signals. Modeling of these systems through numerical
relativity simulations provides critical insight into the de-
pendencies of the signals on binary parameters and nu-
clear physics. Unfortunately, running these simulations
in the high-resolution required to get accurate predic-
tions can present large computational resource barriers in
simulated time or size scales. However, the post-merger
environment has a useful property: by taking advantage
of these systems’ tendency to approach an axisymmetric
state, we can ease the computational resources required
to simulate these systems over extended scales of both
time and space. Although the dynamical timescales of
remnant neutron stars and accretion disks, of the order
∼ms at most, are reasonably accessible to 3D simula-
tions, secular effects that drive the subsequent evolution
can operate on much longer timescales. Particularly im-
portant are angular momentum transport effects that can
act on a wide range of timescales of up to hundreds of
milliseconds [12, 13], and neutrino cooling effects that
operate on timescales of up to several seconds [14].

The use of axisymmetry in numerical relativity simula-
tions has been explored by several groups. This typically
involves evolving Einstein’s equations using the cartoon
method [15] while evolving hydrodynamics by writing the

relevant equations in a cylindrical coordinate system [16–
18]. The cartoon method does involve some loss of accu-
racy due to interpolations required in the method, and
some effort has been made to avoid these [19]. Addi-
tionally, evolution problems due to the coordinate sin-
gularities that arise from the use of polar coordinate
systems have been avoided by use of a reference met-
ric [20–22]. Methods also exist that help with issues of
spatial resolution on large scales, such as adaptive mesh
refinement [19, 23], which is able to concentrate resolu-
tion where it is most needed, while in most cases still
building the grid from Cartesian domains. In multipatch
methods [24–29], one introduces coordinate patches, each
with its own local coordinate system in which it takes a
simple shape (e.g. a Cartesian block), but which can be
deformed in the global coordinate system and fit together
into a grid to match the geometry of the problem. A num-
ber of methods used in numerical relativity not usually
called “multipatch” have local coordinate systems and
therefore fit into this general category, including the mul-
tidomain pseudospectral sector of the Spectral Einstein
Code [30] and the multielement discontinuous Galerkin
methods [31, 32] which many hope will form the basis of
the next generation of numerical relativity codes.

In this paper, we describe a method of implement-
ing the axisymmetric evolution of the general-relativistic
equations of ideal radiation hydrodynamics and magne-
tohydrodynamics through modification of a multipatch
grid scheme, applicable to any method using the local
patch coordinates framework, which we implement in the
Spectral Einstein Code (SpEC) [30]. We show that this
method is able to use the well-developed methods used
for full 3D simulations to quickly be made to run in 2D
axisymmetry.

In Sec. II, we describe the evolution equations for our
(magneto)hydrodynamic variables and the application of
our axisymmetry method to them. In Sec. III several
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tests of this axisymmetry method are presented: a sta-
tionary TOV star, a viscous differentially rotating star,
a magnetized accretion disk, and neutrino radiation in
a spherically symmetric supernova collapse profile, each
showing good agreement with 3D results or previous ax-
isymmetric simulations. Concluding remarks are given
in Sec. IV, where we summarize our results and discuss
future plans.

II. FORMULATION

A. Evolution Equations

We use SpEC to evolve Einstein’s equations and the
general relativistic equations of ideal radiation (mag-
neto)hydrodynamics. SpEC evolves Einstein’s equa-
tions and the general relativistic hydrodynamics equa-
tions on two separate computational grids. A mul-
tidomain grid of colocation points is used to evolve
Einstein’s equations pseudospectrally in a generalized
harmonic formulation [33] while the general relativistic
(magneto)hydrodynamics equations in conservative form
are evolved on a finite difference grid. The finite dif-
ference grid uses an HLL approximate Riemann solver
[34]. Reconstruction of values at cell faces from their cell-
average values is done using a high-order shock captur-
ing method, a fifth-order WENO scheme [35, 36]. Time
evolution is performed using a third-order Runge-Kutta
algorithm with an adaptive time-stepper. At the end of
each time step any necessary source term information is
then communicated between the two grids, using a third-
order accurate spatial interpolation scheme [37].

The following sections make use of the 3+1 decompo-
sition of the spacetime metric

ds2 = gαβdx
αdxβ

= −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
,

(1)

where α is the lapse, βi the shift, and γij is the three-
metric on a spacelike hypersurface of constant coordinate
t. The three-metric is the projection onto spatial hyper-
surfaces of the four-metric:

γij = gij + ninj , (2)

where nµ = (−α, 0, 0, 0) is the unit normal to the t =
constant hypersurface. Additionally, we use the units
with G = c = 1 throughout.

1. Fluid

We begin by treating our fluid as a perfect fluid with
the stress-energy tensor

Tµν = ρ0huµuν + Pgµν , (3)

where ρ0 is the baryon density, h = 1 + P/ρ0 + ε is the
specific enthalpy, P is the pressure, uµ the four-velocity,
and ε the specific internal energy.

The general relativistic hydrodynamics equations are
evolved using the conservative variables

ρ∗ = −√γnµnνρ0 = ρ0W
√
γ, (4)

τ =
√
γnµnνT

µν − ρ∗ = ρ∗ (hW − 1)− P√γ, (5)

Si = −√γnµT µ
i = ρ∗hui, (6)

where W =
√

1 + γijuiuj is the Lorentz factor and γ is
the determinant of γij . Using conservation of energy and
momentum, ∇νTµν = 0, and baryon number conserva-
tion, ∇µ (ρ0u

µ) = 0, we get the evolution equations for
the conservative variables:

∂tρ∗ + ∂j

(
ρ∗v

j
T

)
= 0, (7)

∂tτ + ∂j
(
α2√γT 0i − ρ∗vT i

)
= −α√γTµν∇µnν , (8)

∂tSi + ∂j

(
α
√
γT j

i

)
=

1

2
α
√
γTµν∂igµν , (9)

where the Eulerian velocity vi is related to the fluid trans-
port velocity vT

i by vT
i = αvi − βi. Additionally, for

simulations involving nuclear matter and neutrinos, we
evolve the electron fraction of the fluid, Ye,

∂t (ρ∗Ye) + ∂j

(
ρ∗Yev

j
T

)
= 0. (10)

To close these equations we must also supply an
equation of state for the pressure and enthalpy: P =
P (ρ∗, T, Ye) and h = h(ρ∗, T, Ye).

2. Magnetic Fields

To handle magnetic fields, we begin by adding the
electromagnetic contribution, TEM

µν , to the fluid stress-
energy tensor, where

TEM
µν = FµαF να −

1

4
Fαβ F

αβgµν , (11)

and Fµν is the Faraday tensor. We treat the fluid as a
perfect conductor, Fµνuν = 0, which gives a fixed electric
field for a given magnetic field.

We use two different methods for evolving the magnetic
field, as described in [29]. The first method evolves the
magnetic vector potential Ai and scalar potential Φ. In
the generalized Lorentz gauge [38], the most robust gauge
choice we have explored, the evolution equations are

∂tAi + ∂i
(
αΦ− βjAj

)
= εijkv

jBk, (12)

∂t (
√
γΦ) + ∂j

(
α
√
γAj −√γβjΦ

)
= −ξα√γΦ, (13)

where ξ is a specifiable constant of the order of the mass
of the system.

The second method evolves the magnetic field using
a covariant hyperbolic divergence cleaning method [39–
41] in which an auxiliary scalar evolution variable Ψ is
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introduced in order to propagate and damp monopole
formation. In this method, the induction equation takes
the form

∂tB̃
i − ∂i

(
vjB̃i − viB̃j

)
= αγij∂jΨ̃ + βi∂jB̃

j , (14)

∂tΨ̃ + ∂i

(
αB̃i − βiΨ̃

)
= B̃i∂iα− α

(
Ki

i + λ
)

Ψ̃,

(15)

where B̃i =
√
γBi, Ψ̃ =

√
γΨ, Ki

i is the trace of the
extrinsic curvature, and λ is a specifiable damping con-
stant.

3. Neutrinos

Neutrino evolution is handled using the gray two-
moment scheme as described in [42, 43]. This method
provides evolution of neutrino average energy densities,
flux densities, and number densities. We define three
neutrino species that we evolve: electron neutrinos νe,
electron antineutrinos ν̄e, and the heavy lepton neutrinos
νx. The heavy lepton neutrino species groups together
the four heavy lepton neutrinos and antineutrinos: νµ,
ν̄µ, ντ , and ν̄τ .

We can describe each of our three species of neutrinos
νi using each species’ distribution function fν (xµ, pµ),
where xµ =

(
t, xi

)
gives the time and position of the

neutrinos and pµ is the 4-momentum of the neutrinos.
fν evolves in phase space according to the Boltzmann
transport equation:

pα
[
∂f(ν)

∂xα
− Γβαγp

γ ∂f(ν)

∂pβ

]
= C

[
f(ν)

]
, (16)

where the term C
[
f(ν)

]
includes all collisional processes

(emissions, absorptions, and scatterings).
We simplify the radiation evolution by taking the gray

approximation (integrating over the neutrino spectrum)
and evolving the lowest two moments of the distribution
functions of each neutrino species, truncating the mo-
ment expansion by imposing the Minerbo closure [44].
Our evolved quantities are projections of the stress-
energy tensor of the neutrino radiation, Trad

µν . The de-
composition of Trad

µν in the fluid frame is

Trad
µν = Juµuν +Hµuν +Hνuµ + Sµν (17)

with Hµuµ = Sµνuµ = 0. The energy density J , flux
density Hµ, and stress density Sµν of the neutrino radi-
ation as observed in the frame comoving with the fluid
are related to the distribution functions by

J =

∫ ∞
0

dν ν3

∫
dΩ f(ν) (xα, ν,Ω) , (18)

Hµ =

∫ ∞
0

dν ν3

∫
dΩ f(ν) (xα, ν,Ω) lµ, (19)

Sµν =

∫ ∞
0

dν ν3

∫
dΩ f(ν) (xα, ν,Ω) lµlν , (20)

where ν is the neutrino energy in the fluid frame,
∫

dΩ
denotes integrals over solid angle in momentum space,
and

pα = ν (uα + lα) , (21)

where lαuα = 0 and lαlα = 1. We also make use of
the decomposition of the neutrino radiation stress-energy
tensor as observed by a normal observer,

Trad
µν = Enµnν + Fµnν + F νnµ + Pµν , (22)

with Fµnµ = Pµνnµ = F t = P tν = 0. Additionally, for
each species of neutrino we consider the number current
density:

Nµ = Nnµ + Fµ, (23)

where N is the neutrino number density, and Fµ is the
number density flux. The decomposition of Nµ relative
to the fluid frame can be expressed in terms of J , Hµ,
and the fluid-frame average neutrino energy 〈ν〉 as

Nµ =
Juµ +Hµ

〈ν〉 . (24)

We define a projection operator onto the reference
frame of an observer comoving with the fluid,

hαβ = gαβ + uαuβ . (25)

This allows us to then use the fluid-frame variables to
write equations for the energy, flux, and stress tensor in
the normal frame (i.e. the frame with 4-velocity equal to
the normal vector)

E = W 2J + 2WvµH
µ + vµvνS

µν , (26)

Fµ = W 2vµJ +W
(
gµν − nµvν

)
Hν

+WvµvνH
ν +

(
gµν − nµvν

)
vρS

νρ,
(27)

Pµν = W 2vµvνJ +W
(
gµρ − nµvρ

)
vνH

ρ

+
(
gµρ − nµvρ

)
(gνκ − nνvκ)Sρκ

+W
(
gρν − nρvν

)
vµH

ρ,

(28)

by making use of the decomposition of the 4-velocity,
uµ = W (nµ + vµ).

Evolution equations for Ẽ =
√
γE, F̃ i =

√
γF i, and

Ñ =
√
γN can then be written in conservative form:

∂tẼ + ∂j

(
αF̃ j − βjẼ

)
=

α
(
P̃ ijKij − F̃ j∂j lnα− S̃αradnα

)
,

(29)

∂tF̃i + ∂j

(
αP̃ j

i − βjF̃i
)

=

− Ẽ∂iα+ F̃k∂iβ
k +

α

2
P̃ jk∂iγjk + αS̃αradγiα ,

(30)

∂tÑ + ∂j

(
α
√
γF j − βjÑ

)
= α
√
γC(0), (31)
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where P̃ij =
√
γPij . Complete treatment of these equa-

tions requires prescriptions for the closure relation that
computes P ij(E,Fi), the computation of F j and the col-

lisional source terms S̃αrad and C(0) which couple the neu-
trinos to the fluid (and introduce corresponding source
terms to the right hand side of Eq. (8), (9), and (10)).
Details on the treatment for these are beyond the scope
of this paper, and are available in [42, 43].

4. Viscosity

Viscosity is implemented using the approach of [45]
that extends the Newtonian large-eddy simulation frame-
work to general relativistic systems. In the large-eddy
simulation framework, we recognize that although the
equations for energy and momentum evolution allow for
evolving modes at all scales, in numerical simulations on
a discrete grid we can only evolve modes for which we
have sufficient resolution to cover. Thus each computa-
tional cell deals with averaged values, while any modes
smaller than the cell are removed.

We therefore average over and filter out small scales
in the velocity field, leaving equations for the resolved
fields:

∂tτ + ∂j

(
τvT j + P

√
γαvj

)
=

α
√
γ
(
KijS

jk − Si∂i logα
)
,

(32)

∂tSi + ∂j

(
SivT j + αP

√
γδ ji

)
=

α
√
γ

(
1

2
Sjk∂iγjk +

1

α
Sk∂iβ

k − (τ + ρ∗)√
γ

∂i logα

)
,

(33)

where Kij is the extrinsic curvature and Sij = Sivj +
Pγij . In order to complete this set of mean-field equa-
tions, we must provide a closure condition for the quan-
tity Sivj :

Sivj = Sivj + τij . (34)

τij is the subgrid scale stress tensor, that captures the
turbulent modes unresolved by our grid. We model this
tensor using

τij = −2νT ρhW
2

[
1

2
(∇ivj +∇jvi)−

1

3
∇kvkγij

]
,

(35)
where ∇ is the covariant derivative compatible with γij .
The quantity νT possesses a dimension of a viscosity,
which leads us to the assumption

νT = `mixcs (36)

where cs is the sound speed of the local fluid. `mix is the
characteristic length over which our subgrid scale turbu-
lence occurs and is known as the mixing length.

As explained in [46], we find that, to maintain the rela-
tions Eq. 4– 6 for resolved fields, Eq. 32 must be altered.
In this paper, we use the energy equation with the cor-
rection to 2nd order in v, which is

∂tτ + ∂j

(
τvT j + P

√
γαvj

)
=

α
√
γ
(
KijS

jk − Si∂i logα
)
− ∂j

(√
γτ jkvk

)
.

(37)

B. Multipatch Axisymmetry

Multipatch methods work by dividing the computa-
tional domain into separate domain patches, each of
which may have its own local coordinate system xiL re-
lated to the global coordinate system xiG by a map which
controls the embedding of the domain in global space. In
local coordinates, the patch is (for all applications in this
paper) a simple Cartesian grid. The basis vectors ∂/∂xiL
and ∂/∂xiG are then related by the Jacobian transforma-
tion matrix of the map. Importantly, the patches may
have differing shapes in the global coordinate system that
can be tailored to better capture the desired features of
the simulation. Since our evolution equations for the con-
servative variables are generally covariant, evolution can
be performed directly in the local coordinate system of
each individual patch and then the result can be trans-
formed back to the global coordinate system for any nec-
essary communication of information between patches.

Communication between domain patches occurs
through synchronizing values in the ghost zones of each
patch at the end of each timestep. In the case that
these subdomain patches overlap but do not have di-
rectly matching points we communicate data by inter-
polating values between points. Additionally, we cre-
ate ghost zone points that extend beyond any symme-
try boundaries that we have defined in order to impose
boundary conditions. During the communication phase,
these ghost zone points are filled with data from the live
points using the appropriate symmetry conditions (i.e.
axisymmetry or a reflection symmetry).

When evolving a three-dimensional system using a
two-dimensional computational domain, each gridpoint
represents a ring labeled by two nonazimuthal coordi-
nates. Quite general 2D maps are possible to relate local
to global coordinates, but two are particularly useful. A
linear map (xiG = aix

i
L + bi) corresponds to patches that

are globally rectangular blocks, covering cylinders in 3D.
A polar map [e.g. x1

G = x1
L cos(x2

L), x2
G = x1

L sin(x2
L)]

corresponds to patches that are globally wedges of circles,
covering a specified range of polar r, θ. A combination of
wedges covering 0 < θ < π in 2D covers a spherical shell
domain in 3D. A general 2D grid can contain arbitrary
combinations of rectangular blocks and wedges, as shown
in Fig. 1.

Although the grid is 2D, the tangent space on which
vectors live is still 3D; even axisymmetric systems can
have azimuthal velocity and magnetic field components,
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FIG. 1. Example of a 2D multipatch grid, for use with axisym-
metry, composed of overlapping square (cylindrical-polar) and
wedge (spherical-polar) grid shapes. Points extending be-
yond the symmetry axis are ghost zone points used to impose
boundary conditions. Striped regions show portions of the
grid where two or more patches are overlapping with match-
ing points.

for example. The third coordinate in the local coordi-
nate system is set to be the global azimuthal φ. Then
the local coordinates for a rectangular block will be (up
to linear transformation) cylindrical-polar, while the lo-
cal coordinates for a wedge patch will be (up to linear
transformation) spherical-polar. By modifying the map
Jacobian, we can make the existing transformation be-
tween local and global coordinates handle transforming
the third coordinate into an azimuthal coordinate that
can be used to perform axisymmetric evolutions. To do
this we expand the elements of the Jacobian matrix using
the chain rule to add in the effects of the polar transfor-

mation:

J ij =
∂xiG
∂xjL

=
∂xiG
∂xnA

∂xnA
∂xjL

, (38)

where xG are the global coordinates, xL are the local co-
ordinates of a given grid patch, and xA are a set of global
polar coordinates. Since the global and polar coordinates
only differ in terms involving the azimuthal direction, the
final change from the original Jacobian, J ij , to the new

axisymmetry Jacobian, Jaxi
i
j , will be straightforward:

J ij =


∂x1
G

∂x1
L

∂x1
G

∂x2
L

0

∂x2
G

∂x1
L

∂x2
G

∂x2
L

0

0 0 1

→ Jaxi
i
j =


∂x1
G

∂x1
L

∂x1
G

∂x2
L

0

∂x2
G

∂x1
L

∂x2
G

∂x2
L

0

0 0 $

 ,

(39)
where $ is the coordinate distance from the rotational
symmetry axis and we have chosen coordinate directions
1 and 2 to correspond to the two coordinates defined
by our two-dimensional computational domain and co-
ordinate direction 3 is transformed to the axisymmetric
azimuthal direction φ. We also make use of the Hessian
matrix in the transformation of the derivatives of metric-
related quantities to the local coordinates, and must like-
wise make similar adjustments to the Hessian:

Hi
jk =

∂

∂xjL

(
∂xiG
∂xkL

)
=

∂

∂xjL

(
∂xiG
∂xnA

∂xnA
∂xkL

)
. (40)

Explicitly,

H3
31 = H3

13 = J2
1 , (41)

H3
23 = J2

2 , (42)

H2
33 = −$. (43)

Generally the evolution of Einstein’s equations using
SpEC’s pseudospectral grid tends to use much less com-
puting time than the hydrodynamics evolution, so our
axisymmetry method is primarily aimed at implement-
ing axisymmetric evolution on the hydrodynamics grid
while evolving Einstein’s equations in 3D. Information
required by the pseudospectral grid from the hydrody-
namics grid is expanded back to 3D during communica-
tion. We mention that, for spherical shell pseudospec-
tral domains, whose colocation points correspond to an
expansion of functions in terms of spherical harmonics,
azimuthal information can be reduced by reducing az-
imuthal resolution, corresponding to a lowering of the
azimuthal mode number m retained in spectral expan-
sions. It cannot be lowered to mmax = 0 because the
spectral evolution uses Cartesian components of tensors.
We find, however, that the speed increase from doing so
is modest, and the resulting spectral grids are more prone
to constraint-violating instabilities, so we have not used
azimuthal resolution reduction on pseudospectral grids
for the simulations in this paper.
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The conservative form of radiation magnetohydrody-
namics evolves variables that are densities and thus pro-
portional to

√
γ. Under local to global transformation,

the metric determinant transforms as
√
γL = J

√
γG,

where J is the determinant of the Jacobian. Note that
J is zero on the axis, and indeed would naturally change
sign there because the orientation of the basis vectors
switches there. SpEC always takes a positive square root,
but the only points on the other side of the axis are ghost
zone points (needed to impose the symmetry boundary
conditions), and non-smooth functions like

√
γ are not

interpolated or reconstructed.
Unfortunately, when evolving, this method is prone to

producing errors near the symmetry axis that, without
correction, grow over time. Vector and tensor valued
quantities are most heavily affected due to direct trans-
formation of components in the azimuthal coordinate di-
rection introducing singular terms. An example of this
type of error is shown in Fig. 2. Eventually though, all
of our evolved quantities, including scalar quantities, will
suffer from errors due to also picking up a singular term
in the determinant of the 3-metric.

The problem primarily occurs during the computation
of the divergence of the flux term, FA, in the evolution
equation of a given quantity A

∂tA+ ∂iFA
i = SA (44)

with SA being any source terms appearing on the right-
hand side of the equation.

Some early 2D general relativistic hydrodynamic simu-
lations stabilized the axis evolution using dissipation [47,
48]. Our solution, inspired by [22], is to factor out sin-
gular terms that have been introduced to FA during the
transformation to the local coordinates prior to comput-
ing the divergence. Depending on the specific component
of the flux FA corresponding to A, there may be multiple
factors of $ that need to be removed:

FA
i = $nF̃A

i, (45)

where F̃A is just the $-factored form of the flux, and the
integer n will depend on A. We can now instead take the
divergence of this factored form of the flux and apply the
chain rule, which gives

∂i($
nF̃A

i) = $n∂iF̃A
i + n$n−1 ∂$

∂xiL
F̃A

i. (46)

We can also take advantage of the property that if
the coordinate specified by $ corresponds to one of the
directions in the global coordinate system, for example
if the global coordinates are Cartesian, the derivatives of
$ with respect to the local coordinates can be directly
taken from components of the Jacobian dealing with the
direction associated with $. With this, all of the singular
terms introduced from the polar Jacobian are removed
from the divergence. Importantly though, the divergence
of F̃A in the first term on the right side of this equation

will need to be computed using the value of F̃A at cell
faces using the Riemann solver, while F̃A in the second
term on the right side will use the value at cell centers.

Additionally, since all components have now been
transformed into a polar coordinate system, from the def-
inition of axisymmetry we have

∂φFA
φ = 0, (47)

where the φ-index indicates the coordinate of the axisym-
metric azimuthal direction. This allows us to ignore the
azimuthal portion of the divergences so that we only need
to apply the factoring to the two components of the flux
that lie in the plane of the computational grid (i = 1 and
2 in the below factoring).

All of our evolved quantities carry a factor of
√
γ,

which will also acquire a singular term, from the trans-
formation of γij to the local coordinate system, that also
needs to be handled analytically. The flux factoring thus
falls into three broad categories for our current evolution
equations. Factoring of fluxes for scalar density quanti-
ties [Eq. (7), (8), (10), (13), (15), (29), (31), and the
added term in (37)], takes the form

FA
i = $F̃A

i
, (48)

∂iFA
i = $∂iF̃A

i
+
∂$

∂xiL
F̃A

i
. (49)

Factoring for covariant vector density quantities [Eq. (9),
(12), and (30)], takes the form

FA
i
j =

{
$F̃A

i

j , for j 6= φ

$2F̃A
i

j , for j = φ,
(50)

∂iFA
i
j =


$∂iF̃A

i

j + ∂$
∂xiL

F̃A
i

j , for j 6= φ

$2∂iF̃A
i

j + 2$ ∂$
∂xiL

F̃A
i

j , for j = φ.
(51)

Factoring for contravariant vector density quantities [Eq.
(14)], takes the form

FA
ji =

{
$F̃A

ji
, for j 6= φ,

F̃A
ji

, for j = φ,
(52)

∂iFA
ji =

$∂iF̃A
ji

+ ∂$
∂xiL

F̃A
ji

, for j 6= φ,

∂iF̃A
ji

, for j = φ.

(53)

In each of these, the index i only covers coordinates 1
and 2 due to Eq. 47. SpEC and most other relativistic
hydrodynamics codes use conservative shock capturing
techniques with approximate Riemann solvers. For codes
of this type, a convenient way to implement this factoring
program is to use a different coordinate basis, with 1

$
∂
∂xφ

instead of ∂
∂xφ

, on cell faces than on cell centers. That
is, one simply reconstructs factored quantities.
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(a) Without flux factoring (b) With flux factoring

−1

0

1

∆Sφ

(∆Sφ)max

FIG. 2. Example of error growth in the evolution of Sφ near the symmetry axis of a low resolution, differentially rotating star
in a stationary state. Both images plot the difference of Sφ between the initial state and the end of the first time step, with the
color scale chosen to enhance the appearance of errors inside the star. Since the initial conditions are an equilibrium state, all
deviations from zero are due to numerical error. A good handling of the symmetry axis leads to errors not being particularly
large there. The left image shows the multipatch axisymmetry method applied without factoring of flux terms, while the right
shows the star with factoring enabled.

When evolving a magnetic vector potential, it is also
necessary to factor Aφ when computing Bi.

∂iA
φ = $∂iÃ

φ + Ãφ
∂$

∂xi
, (54)

where Ãφ = Aφ/$ [49].
Metric-related quantities (γij , α, β) are evolved on

their own separate spectral grid in 3D and are commu-
nicated to the hydrodynamics grid at the end of each
time step. Spatial derivatives of these metric quantities
are computed while on the metric grid and then commu-
nicated to the hydrodynamics grid, at which point they
can be transformed into the local coordinate system as
needed. The transformation to local coordinates uses
the analytic Jacobian and Hessian, so metric derivatives
automatically have their singular factors treated analyt-
ically. The transformation equations for global to local
components of metric derivatives are

βL
j
,i = (J−1)j

j
J iiβG

j

,i
− βLk(J−1)j

j
Hj

ik , (55)

γL
ij
,k = (J−1)i

i
(J−1)j

j
Jkk γG

ij

,k

−Hm
kn [γL

nj(J−1)im + γL
in(J−1)jm].

(56)

C. Auxiliary Entropy Variable

After each substep, the evolved variables
(ρ∗,τ ,Si,ρ∗Ye,B̃i) must be used to recover the primi-
tive variables (ρ0,T ,Ye,ui,B

i), a process that involves
multi-dimensional root-finding. In particular, if the
internal energy is small compared to kinetic or magnetic
energy, the temperature recovered from total energy
and momentum densities will be unreliable. Due to
numerical error, recovered T and ui, especially at very
low densities, may be unphysical, or there may not
even be a set of primitive variables corresponding to the
evolved variables at a point.

As in [29, 50], we introduce an auxiliary entropy den-
sity evolution variable ρ∗S, where S is the specific en-
tropy. The variable ρ∗S obeys a continuity equation (vis-
cous and neutrino source terms being unimportant for its
purpose) which can be treated in axisymmetry like the
other scalar density evolution equations. After each sub-
step in time, SpEC first attempts to recover primitive
variables using the standard evolution variables. If this
is not possible, or if the recovered specific entropy de-
creases by more than a fixed percentage compared to its
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advected value [51], primitive variables are recovered dis-
regarding τ and using ρ∗S. At the end of each substep,
the primitive variables are used to reset all evolution vari-
ables, so that τ and ρ∗S are synchronized to each other.

For physical equations of state (e.g. finite-temperature
nuclear-theory based EoS), the actual statistical mechan-
ical entropy per baryon can be used to define S. How-
ever, in numerical relativity, equations of state are com-
monly used which have no uniquely defined entropy or
temperature, although with absolute zero specified from
outside (e.g. for Gamma-law EoS, a value of the poly-
tropic constant is defined to be “cold”). A common case
is an EoS with nuclear physics-motivated cold component
plus a simple thermal Gamma-law component added on.
In terms of baryonic number density n = ρ0/mamu and
internal energy density u,

P (n, u) = Pc(n) + (Γth − 1)(u− uc), (57)

where

Pc(n) = n2 d[Uc/n]

dn
. (58)

The first law gives

nTdS = −(u+ P )dn+ ndu. (59)

Combining the three above equations yields, after a short
calculation,

nTdS = ρΓth
0 d

[
(u− uc)ρ0

−Γth
]
, (60)

so (u−uc)ρ0
−Γth advects for adiabatic change, indicating

that this is an acceptable S variable. For Gamma-law
EoS, one can set uc = 0, yielding the standard auxiliary
entropy variable (up to a scaling factor) for this case.

III. TESTS

A. TOV Star

Initial stability testing was performed using a Tol-
manOppenheimerVolkoff (TOV) star in a stationary
state. The star was created using a polytropic equation of
state with polytropic index Γ = 2, polytropic constant κ
= 100G3c−4M2

� = 1.82×1010 cm5 g−1 s−2, and a central
density of 7.72 × 1014 g cm−3. This resulted in a grav-
itational mass of 1.38 M�, a baryonic rest mass of 1.49
M� and a circumferencial radius of 14.22 km. The star

was evolved for 2.46 ms = 20
√
R3/(GM) in 2D, using

both axisymmetry and equatorial symmetry. The com-
putational domain was a square grid 14.7 km×14.7 km in
size, and was evolved using four different resolutions with
uniform grid spacing: 50× 50, 100× 100, and 200× 200
grid points. For this test, we evolve using the Cowling
approximation, meaning the metric is held fixed.

In Fig. (3) we plot the percent error in the maximum
density of the star over time for each resolution, rescaled
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FIG. 3. Percent error in the maximum density for the TOV
star. Error is shown for grid resolutions of 50×50, 100×100,
and 200 × 200. The error for the 100 × 100 and 200 × 200
resolutions have been scaled up by the square of the change
in resolution from the 50 × 50 case.

. We see an initial spike in density at the center of the
star. This is caused by relaxation of the surface of the
star, creating a disturbance that moves inward. Den-
sity is continuous but not smooth at the surface, so this
featuret exhibits approximately first-order convergence.
After this initial peak settles, we see second-order con-
vergence.

B. Differentially Rotating Star

We choose a star with very similar profiles and global
properties as the differentially rotating star used in [52]
and likewise use this star to test the evolution of a system
under the influence of viscosity. The star has an initial
baryonic rest mass of 2.64 M� and an equatorial radius
Re = 10.2 km. We use a piecewise polytropic equation
of state, in two pieces, of the form

P =

{
κ1ρ

Γ1 , ρ ≤ ρt
κ2ρ

Γ2 , ρ ≥ ρt,
(61)

where κ1 and κ2 are polytropic constants, Γ1 and Γ1 are
the polytropic indices, and ρt is the density at which
we transition between the two pieces. For this star, we
choose the polytropic indices to be Γ1 = 4/3 and Γ2 =
11/4; we set the transition density between the two to be
ρt = 1.91 × 1014 g cm−3 and the low-density polytropic
constant to κ1 = 0.15GM�2/3.

The initial rotation profile for the star is given by
utuφ = Â(Ω0−Ω) where Ω0 is the angular velocity along

the rotation axis and we choose Â = 0.8Re. The ini-
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FIG. 4. Evolution of density profiles of the differentially rotating viscous star with mixing length `mix = 147 m. The first panel
shows the outlines of each of the overlapping subdomain patches used to construct the computational domain.

tial equilibrium state is supplied by the code of Cook,
Shapiro, and Teukolsky [53].

In order to handle outflows that will occur when vis-
cosity is enabled, we create a computational grid better
suited for resolving both the central star and low den-
sity outflowing material. Since any outflows that occur
will rapidly drop in density and are not expected to have
any small detail features of concern after they leave the
region of the star, we leverage the utility of the multi-
patch technique to apply differing grid structures to each
zone of interest. In the central region containing the star
we employ the same rectangular grid structure as seen in
the previous TOV star test, with a resolution of 100×100
grid points. In the outflow region we switch to a polar
grid with constant latitude resolution (so that the proper
spacing between angularly adjacent points increases with
distance from the star). The polar grid has 50 points in
the angular direction (covering 0 < θ < π/2) and 400
points in the radial direction. We apply a map to the
entire grid that allows us to reduce radial resolution at
large distances:

R = r + 2e−γβ sinh(γr), (62)

where r is the radius in grid coordinates (the coordi-
nates in which radial grid spacing is uniform), and R is
the radius in the original quasi-isotropic, asymptotically-

Minkowski coordinates. The map provides an approxi-
mately linear grid spacing for radii less than β, which
we have chosen to be at 25.85 km, and then switches to
an exponential grid spacing based on γ, which is chosen
such that router = 73.5 km is mapped to Router = 2205
km. The pseudospectral grid used for the evolution of
Einstein’s equations is composed of an inner ball at the
center of the star surrounded by a series of spherical shells
extending to a distance of 2940 km.

We impose a density floor outside of the star which is
necessary to avoid division by zero in our finite difference
solver. At densities below the floor we recover tempera-
ture and velocity using the prescription described in [54].
We recover the primitive variables from the conservative
variables using the auxiliary entropy variable in these ar-
eas using the process in [29]. In this test, we have modi-
fied the density floor from our previous implementations
to use a floor dependent on radius:

ρ0 >
A

1 +R2
+B, (63)

where we have chosen A = 1.62 × 104 g cm−3 and B =
1.62× 10−2 g cm−3.

For this test, we employ the viscosity treatment de-
scribed in Section II. To make a comparison with the
results of the α-viscosity model used in [12], we devise a
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FIG. 5. Rotational velocity profile of the viscous differen-
tially rotating star in the equatorial plane at multiple times.
We see the rotation profile begin to flatten as viscous effects
redistribute angular momentum inside the star.

mixing length `mix corresponding to the same kinematic
viscosity as a constant α. The α-viscosity model is gen-
eralized to differentially rotating stars in [12] by setting

να =
αc2s
Ωe

, (64)

where cs is again the local sound speed and Ωe is the
angular velocity of the star at the surface on the equator.
Equating this to Eq. (36), we can get an approximate
relation between the strength of a given mixing length to
that of an α-viscosity parameter:

`mix =
αcs
Ωe

. (65)

For the current test we set the viscous mixing length to
`mix = 147 m, giving a comparable viscous strength to
α = 0.01. The timescale for viscous angular momentum
transport is approximately R2/ν. Using Eq. (36) gives a
timescale on the order of

tvisc ∼ 10 ms
( r

10 km

)2
(
`mix

147 m

)−1 ( cs
0.3c

)−1

. (66)

As evolution begins the star quickly begins to trans-
port angular momentum outward causing the rotational
velocity profile to become flatter. Although the rotation
profile does flatten, we see from Fig. 5 that the profile
never completely settles into a rigidly rotating state, and
retains some differential rotation. This is a feature of this
viscosity method [46].

Qualitatively the outflow near the star produces the
expected distribution of material producing a short, low
density burst of material as viscosity is enabled, and at
later times as more material leaves the star a disk begins
to form.

C. Magnetized Disk

We evolve a standard axisymmetric MHD test prob-
lem: a magnetized torus around a Kerr black hole. The
initial conditions for this test are matched to the “fidu-
cial model” of McKinney and Gammie [55]. A black hole
with dimensionless spin J/M2 = 0.938 is surrounded
by a Fishbone-Moncrief torus [56] with inner edge at
rBL = 6M and specific angular momentum determined
by utuφ = 4.281. The torus has initial maximum den-
sity ρ0 = 1 and a Γ = 4/3 equation of state. A confined
poloidal seed field is introduced via the initial vector po-

tential 1-form Ã = A0max(ρ0 − 1, 0)d̃φ, with A0 chosen
to make the maximum ratio of magnetic to gas pressure
be around 0.01. We evolve for 3000M on a 256×256
spherical-polar grid with inner radius at rBL = 1.32M
and maximum radius at 60M .

The Kerr spacetime is written in in Kerr-Schild coor-
dinates. We make the standard change of variables for
spherical-polar disk simulations:

r =
√
x2 + z2 = ex1 , (67)

θ = πx2 +
1

2
(1− h) sin(2πx2). (68)

Setting a uniform grid in x1, x2 concentrates resolution
near the black hole and on the equator. We set h = 0.5.
Finally, because r 6= rBL we compose with a final coordi-
nate map to map the coordinate spheres (x2 +z2)1/2 = C
to surfaces of constant Kerr radius rBL = C. This allows
an excision inner boundary inside the horizon rBL = r+

that conforms better to the horizon shape.
For this run, we use a position-dependent density floor

ρ0 > 10−5r−3/2. We also increase ρ0 and P in the
magnetically-dominated region as needed to maintain
b2/ρ0 < 10 and b2/P < 500, which significantly improves
the step size chosen by the adaptive timestepper. We
evolve both with hyperbolic divergence cleaning and vec-
tor potential evolution. For the vector potential evolu-
tion, we use the generalized Lorentz gauge [38]. Simpler

gauges, such as the algebraic ∂tÃ = ~v · B̃ and advective

∂tÃ = −LvÃ give the same evolution of gauge-invariant
quantities but, after a while, at a drastically reduced
timestep, presumably because the vector potential does
not remain as smooth.

The vector potential evolution benefits from added ex-
plicit dissipation. We apply Kreiss-Oliger dissipation [57]
to the evolution of Ai and Φ with a coefficient of 0.001.
(Our dissipation operator is defined as a sum of fourth
derivatives with respect to local coordinates but ap-
plied to global components of the relevant evolved vari-
ables.) Without dissipation, grid-scale ripples appear
in the magnetic field atop an otherwise reasonable field
structure. If the coefficient is increased to 10−2, the main
difference is a slightly lower asymptotic speed in the po-
lar jets. Kreiss-Oliger dissipation is not needed for diver-
gence cleaning runs; in fact, it destabilizes the magnetic
field evolution near the excision zone. Instead, extra dis-
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FIG. 6. Magnetized disk with field lines at time t = 1500M , with M the mass of the black hole (which we set equal to one).
The right panel shows the region highlighted by the white box in the left panel. Magnetic field and velocity fields are averaged
over the time 1000 < t/M < 1500. The initial maximum density in the torus is chosen to be unity. Profiles are plotted in
Kerr-Schild coordinates. The longest velocity vector arrows close to the poles far from the black hole correspond to speed very
close to 1 = c.

sipation for divergence cleaning simulations is obtained
by setting the maximum signal speeds in our HLL Rie-
mann solver for the evolution of B̃ and Ψ to the null
speeds.

The qualitative expectations for this problem are well-
known and are reproduced for our runs for both types of
B field evolution. Magnetic winding generates a toroidal
magnetic field, while the magnetorotational instability
triggers turbulence in the disk. Matter falls into the black
hole at an average rate of about Ṁ ≈ 10−1. The poles
become magnetically dominated. An outgoing Poynt-
ing flux can be found in this region, and gas acceler-
ates to near the speed of light on the poles away from
the black hole. The magnetic field energy grows for the
first 1000M , then saturates, then begins to die away at
a steady rate. This decrease of the magnetic field is not
physical but it is expected in any axisymmetric simu-
lation (at least one not enhanced by dynamo-modeling
additions to the induction equation [58]) because of the
anti-dynamo theorem. Outside the region close to the
poles, a mildly relativistic wind is seen. The configura-
tion of the system at t = 1500M is shown in figure 6.

None of this is newsworthy, although it is reassuring
to confirm for the first time that SpEC can produce
magnetically-dominated jets when they are expected.
For our purposes, the main value of this test is that
we can check, for a complex, astrophysically interest-
ing MHD problem, that our code produces no unphys-
ical axis artifacts in any quantity we have checked (ρ0,
vi, Bi, b2/P ). Of course, the axis actually is a special
region in this problem, which is clearly seen in the solu-
tion, but this can easily be distinguished from artifacts of
the coordinate singularity because the latter have grid-
spacing width. The absence of such glitches is, in fact,

a nontrivial accomplishment. For divergence cleaning
evolutions without factoring of the evolution equations,
grid-scale axis artifacts in the velocity are easily seen, al-
though they can be suppressed by using low-order recon-
struction (MC2 [59]) near the axis. For vector potential

evolutions without factoring the computation of B̃ from
Ã, axis glitches become so severe that simulations crash
shortly after accretion onto the black hole begins.

Although the results are qualitatively similar, we con-
sider the vector potential method superior for this prob-
lem, at least with our current implementations. In di-
vergence cleaning methods, Ψ builds up at boundaries,
particularly the excision boundary. The amount tends to
grow with time and we fear would eventually endanger
the simulation. Because of it, magnetic energy fluxes are
not reliable in the inner layer of points (while in vector
potential evolutions, the inner layer shows no problems).
Presumably the solution would be to improve the treat-
ment of the magnetic variables at boundaries.

D. Neutrino Radiation

1. Spherically Symmetric Collapse Profile

Initial testing of the axisymmetric neutrino code
was performed by comparing the results obtained from
the spherically symmetric post-bounce supernova profile
used in [43] in both 2D axisymmetry with equatorial sym-
metry and in 3D using octant symmetry. In this test we
evolve the moments of the neutrino distribution function,
fluid temperature, and fluid composition (the electron
fraction Ye) for a 1D profile constructed as a spherical
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average of a 2D core collapse simulation 160 ms after
bounce. The velocity of the fluid is set to zero.

We perform this test in 2D on a square grid with length
300 km and a resolution of 200× 200 grid points. In 3D,
we use a cube with the same length of 300 km and a res-
olution of 200×200×200 grid points. Both systems were
evolved for 1.5 ms using a fixed timestep of 4.9 × 10−3

ms to ensure that no error was introduced from possible
differences between 2D and 3D in the adaptive timestep-
per. The 2D test used 24 processing cores and required

2.41 core-hours of run time, whereas the 3D test on 48
cores required 470.27 core-hours, achieving a speed up
factor of ∼195. We see very strong agreement in results
between the 2D and 3D results, as seen in Fig. 7 and 8.
This agreement might seem trivial since the 2D and 3D
grids are closely matched, but the polar transformation
significantly alters the flux divergence and metric deriva-
tive source terms considered separately. Also, factoring
is essential for avoiding strong axis artifacts.

IV. CONCLUSION

We have implemented an axisymmetric evolution of
the general relativistic hydrodynamics equations through
modification of the local coordinate transformations of a
multipatch scheme. Without the appropriate factoring of
singular terms from spatial derivatives near the symme-
try axis, we find that unphysical errors grow in evolved
quantities. Testing of this method, with factoring of sin-
gular terms applied, produces results that compare favor-
ably to full 3D simulations at a fraction of the required
computational time. Since only minimal modification of
the implementation of the evolution equations in 3D was
required, this method provides a path for a quick appli-
cation of axisymmetric evolution to codes that make use
of computational domains with local coordinate transfor-
mations.

We plan to move forward using this method in order to
study the effects of a wide variety of physical parameters
on binary post-merger environments that require evolu-
tion on secular timescales that we have been unable to
explore in the past. Additionally, although our method
currently evolves Einstein’s equations in 3D using spec-
tral methods, we would also like to extend axisymmetry
to the evolution of those equations as well.
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