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The availability of accurate numerical waveforms is an important requirement for the creation and
calibration of reliable waveform models for gravitational wave astrophysics. For black hole-neutron
star binaries, very few accurate waveforms are however publicly available. Most recent models are
calibrated to a large number of older simulations with good parameter space coverage for low-spin
non-precessing binaries but limited accuracy, and a much smaller number of longer, more recent
simulations limited to non-spinning black holes. In this paper, we present long, accurate numerical
waveforms for three new systems that include rapidly spinning black holes, and one precessing
configuration. We study in detail the accuracy of the simulations, and in particular perform for the
first time in the context of BHNS binaries a detailed comparison of waveform extrapolation methods
to the results of Cauchy Characteristic Extraction. The new waveforms have < 0.1 rad phase errors
during inspiral, rising to ∼ (0.2 − 0.4) rad errors at merger, and . 1% error in their amplitude.
We compute the faithfulness of recent analytical models to these numerical results, and find that
models specifically designed for BHNS binaries perform well (F > 0.99) for binaries seen face-on.
For edge-on observations, particularly for precessing systems, disagreements between models and
simulations increase, and models that include precession and/or higher-order modes start to perform
better than BHNS models that currently lack these features.

I. INTRODUCTION

Over the last 5 years, our ability to observe gravita-
tional waves from merging compact objects has grown at
an impressive rate. The first observation of two merging
black holes (GW150914) [1] was followed by nine more
black hole mergers during the “O1” and “O2” observ-
ing runs of the LIGO-Virgo Collaboration (LVC) [2], as
well as the first detection of a binary neutron star merger
(GW170817) [3]. The O3 observing run is still being an-
alyzed by the LVC, but public alerts indicate that dozens
of additional mergers have been observed.1

The third type of binary merger likely to be detected
by current observatories, black hole-neutron star (BHNS)
mergers, remains the most elusive. At the time of this
writing, five O3 alerts are classified as likely BHNS merg-
ers. However, the robust classification of a specific event
as a BHNS binary remains a difficult task, due to uncer-
tainties about the mass range of black holes and neutron
stars, and the inability of current observatories to di-
rectly demonstrate the presence of a neutron star in the

1 See e.g. https://gracedb.ligo.org/superevents/public/O3/

absence of an electromagnetic counterpart to the grav-
itational wave signal. The classification of an event as
a BHNS merger in public alerts only indicates the likely
presence of an object of mass M < 3M�, that could
also be a low-mass black hole. Most notably, one of
the five “BHNS” alerts is the now published GW190814
event [4]. In that system, the lower mass object has a
mass M ∈ [2.51, 2.67]M� (at 90% confidence), and could
be either the lowest mass black hole or the highest mass
neutron star observed to date. On the other hand, the
second likely binary neutron star system published by
the LVC (GW190425) [5] has a most massive object with
mass M ∈ [1.61, 2.52] (allowing for non-negligible spins),
and could potentially be a BHNS merger if (2 − 3)M�
black holes exist. It is quite likely that we will only be
sure of the detection of a BHNS binary when we ob-
serve either a system where both masses provide unam-
biguous information about the nature of the merging ob-
jects (a statement that clearly depends on one’s priors for
the possible distribution of black hole and neutron star
masses), or when we observe an electromagnetic counter-
part to a GW event for which the most massive object is
guaranteed to be a black hole (e.g. with M & 3M�).

Nearly all GW observations performed so far relied on
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the availability of accurate signal template banks.2 This
may lead to some complications and observation biases
when observing BHNS binaries. Indeed, mixed binaries
are likely to have larger mass asymmetries and to exhibit
more orbital plane and spin precession than black hole
binaries and neutron star binaries. The use of aligned-
spin templates in detection pipelines can then lead to the
loss of a significant fraction of events [6]. GW templates
including precession, tidal effects, and the potential dis-
ruption of the neutron star may help alleviate these is-
sues, and will certainly be valuable to perform parameter
estimation. Existing models for the GW signals emitted
by BHNS binaries, however, have only recently begun to
include both phase and amplitude corrections associated
with tidal distortion and with the disruption of the neu-
tron star (see e.g. [7–9]), and do not so far account for
precession.

This is where numerical simulations play an important
role: analytical models are tested and calibrated on nu-
merical simulations, to make sure that the models prop-
erly capture the late-time inspiral and non-linear merger
phase. Numerical waveforms hybridized with analytical
models at early times can also be injected into param-
eter estimation pipelines to estimate model biases (see
e.g. [10, 11] for BHNS mergers). There is, however, a
limited number of available numerical waveforms to per-
form these tests. The 134 SACRA simulations used by
Lackey et al [7] still provide the most extensive param-
eter space coverage of BHNS mergers, yet these wave-
forms are now quite old. The limited length and accu-
racy of the simulations make them most useful to cali-
brate amplitude corrections at the time of merger, but
not as useful to the modeling of the GW phase. Addi-
tionally, these waveforms are limited to aligned BH spins
with dimensionless spins χ < 0.75. We have recently
published a much smaller set of 5 longer, more accurate
SpEC simulations [12], publicly available as part of the
SXS catalogue,3 but these simulations are limited to non-
spinning black holes and obviously do not come close to
the SACRA waveforms in term of parameter space cover-
age.4 Two of the five have very high neutron star spins,
to help efforts to model dynamical tides in BHNS merg-
ers [14], but are otherwise less useful to calibrate models
within the most likely range of BHNS parameters.

In this paper, we present a new set of 3 BHNS bina-
ries [15–17] performed with the SpEC code. These simu-
lations complement our existing set of long, accurate sim-
ulations. All of these systems have more realistic mass
ratios than most of our public waveforms (Q = 3, 4).
Two have higher BH spins than existing public wave-

2 The first event, GW150914, was loud enough to be detected with
a less model-dependent pipeline [1]

3 https://data.black-holes.org/waveforms
4 The SACRA code is also capable of generating longer, more ac-

curate waveforms, as demonstrated for binary neutron star merg-
ers [13]

forms (χBH = 0.9), aligned with the orbital angular mo-
mentum of the binary. The third has a significant BH
spin (χBH = 0.75) misaligned with the orbital angular
momentum by 45◦, leading to significant precession of
the orbital plane. All three waveforms are long by the
standard of BHNS simulations (26 − 33 cycles). They
also have accuracy comparable to the BHNS waveforms
in our current catalogue, despite the use of higher mass
ratios and higher black hole spins. In fact, the numeri-
cal accuracy of these waveforms is high enough that we
have to more carefully analyze the uncertainty associated
with the extrapolation of the GW signal to null infinity.
We thus perform a detailed study of waveform extrapo-
lation errors, and compare for the first time the results of
waveform extrapolation to the waveforms obtained using
Cauchy Characteristic Extraction (CCE) methods.

We describe our numerical methods in Sec. II, the re-
sulting waveforms in Sec. III A, and our numerical accu-
racy in Sec. III B. A comparison between waveform ex-
trapolation and CCE is provided in Sec. III C. In the rest
of this paper, we use units such that G = c = 1, and de-
fine MBH,MNS as the ADM masses of the black hole and
neutron star at infinite separation, M = MBH +MNS as
the total mass of the system, and χBH as the dimension-
less black hole spin. All neutron stars in our simulations
are initially non-spinning.

II. METHODS

A. Evolution methods

The simulations presented here are performed with the
SpEC numerical relativity code.5 SpEC evolves Ein-
stein’s equations in the Generalized Harmonic formal-
ism [18] on a pseudospectral grid. The grid rotates and
contracts to follow the evolution of the binary, and is
distorted so that the apparent horizon of the black hole
remains nearly spherical [19]. A sphere of constant grid-
frame radius is excised from the grid to avoid evolving the
interior of the black hole. The general relativistic equa-
tions of hydrodynamics are solved on a separate cartesian
grid [20, 21]. Our latest algorithm follows the prescrip-
tions of Radice et al [22] to obtain high-order convergence
in smooth regions while capturing shocks.

The neutron star matter is described by a Γ = 2 ideal
gas equation of state, with an ad-hoc thermal compo-
nent: P = 101.45ρΓ

0 + Γρ0T , with P the pressure and
ρ0 the baryon density. We choose the central density of
the neutron star to get a small but reasonable compact-
ness CNS = GMNS/(RNSc

2) = 0.144 for MNS = 1.4M�.
The use of such a simple equation of state has a few
advantages, including lower simulation costs and higher
numerical accuracy than for more realistic models, and

5 http://www.black-holes.org/SpEC.html
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the possibility to rescale the result of the simulations with
the total mass of the system. Hence, in this paper, we
typically report all masses, times, and distances as di-
mensionless numbers. Its main disadvantage is that while
the dimensionless tidal deformability of the neutron star
is reasonable (Λ = 791, around the upper bound allowed
by current observations for low-mass neutron stars), the
internal structure of the star and the inferred mass-radius
relationship are not. This is less of an issue for BHNS
systems than for binary neutron star systems (as the lat-
ter require us to construct two neutron stars, potentially
of different masses, with physically consistent tidal prop-
erties), but would certainly be a major limitation if we
wanted to study the formation of a post-merger accre-
tion disk, or any microphysics. For GW modeling, the
tidal deformability has been shown to be the main pa-
rameter setting the properties of GW signals both before
and during merger [7]. Further tests of the impact of
the equations of state beyond the dimensionless tidal de-
formability would however be desirable in the future.

We use a third-order Runge-Kutta method for the time
evolution. At the end of each time step, the metric and its
derivatives are interpolated from the pseudospectral grid
to the finite difference grid, while the fluid variables are
interpolated from the finite difference grid to the pseu-
dospectral grid. At other times (e.g. at intermediate
steps of the Runge-Kutta algorithm, or when evaluating
variables using dense output), variables evolved on an-
other grid are evaluated using linear extrapolation, using
their last two communicated values. Overall, the simula-
tions presented here use the exact same numerical meth-
ods as the simulations published in Foucart et al [12].

B. Grid structure

The finite difference grid used in our simulations has
a relatively simple structure. Before merger, we use a
Cartesian grid with constant grid spacing ∆xgrid in the
grid coordinates. As the grid contracts during the bi-
nary inspiral, this would lead to a significant decrease
in the grid spacing in the inertial frame, to 0.4∆xgrid

by the time of merger, dramatically increasing the cost
of the simulations. Instead, whenever the grid spacing
decreases by 20% in the inertial frame, we reset it to
the grid spacing at the initial time, interpolating onto a
coarser finite difference grid. This operation is performed
∼ 4 − 5 times per simulation, and keeps the resolution
roughly constant during the evolution. Once the neutron
star disrupts, we use fixed mesh refinement. The finest
level of refinement is a grid of 3243 cells, centered on the
black hole, and with the same spacing as the pre-merger
grid in the inertial frame. Additional levels of refine-
ment are added as needed, each new level a 3243 grid
centered on the black hole and twice the grid spacing of
the previous level. We note that to save computational
resources, these grids are divided into 273 cells blocks
that can be fully ignored by the evolution if no matter

is present in the region that they cover. After the grav-
itational wave signal from the merger has left the finite
difference grid, we save computational resources by re-
ducing the resolution of that grid: by that point, follow-
ing the gravitational waves to the radius at which they
are extracted is our only concern, and this only requires
evolution of Einstein’s equations. We evolve each con-
figuration at 3 resolutions, summarized in Table I. If we
assume MNS = 1.4M�, these correspond to initial grid
spacings ∆x0

FD = (295, 236, 189) m.
Before merger, the pseudospectral grid is constructed

from 8 spherical shells surrounding the black hole, 1 ball
and 8 spherical shells covering the neutron star and its
surroundings, and 32 spherical shells covering the wave
region (centered on the center of mass of the binary, and
with radii ranging from 2.5 times the binary separation
to Rout = 500M). Between these 3 regions, we use dis-
torted cylinders, with the line connecting the compact
objects as their axis. After merger, the region inside of
the 32 outer shells is covered with “CubedSphere” sub-
domains, i.e. cubes distorted so that one coordinate is
constant at constant radius (defined as the distance to
the center of the remnant black hole). The number of
basis functions within each of these subdomains is cho-
sen adaptively, to obtain a user-specified accuracy esti-
mated from the spectral coefficients of the evolved vari-
ables [21, 23]. The target accuracy on the pseudospectral
grid scales as (∆x0

FD)5. Errors on the pseudospectral grid
should thus converge to zero faster than the errors on the
finite difference grid.

Visualizations of the matter density, black hole appar-
ent horizon, finite difference grid, and pseudospectral grid
are provided in Fig. 1 for simulation Q4S9 (see next sec-
tion), around the time of merger. The figure illustrates
the adaptivity of both numerical grids.

C. Initial Conditions

Initial conditions for all simulations are obtained us-
ing our in-house Spells initial data solver [24–26]. Spells
solves for the constraints in Einstein’s equations and for
an irrotational velocity profile inside the neutron star,
while imposing hydrostatic equilibrium. We first find
initial data on a quasi-circular trajectory [26, 27], then
reduce the eccentricity according to the iterative proce-
dure described in Pfeiffer et al [28]. Each iteration re-
quires the evolution of the binary for ∼ 3 orbits. We tar-
get eccentricities of . 0.002 for non-precessing systems.
For the precessing system in this paper, the eccentricity
of the quasi-circular initial data was already very small
(e ∼ 0.003), and could not be reduced using our standard
procedure.

We consider 3 initial configurations, summarized in Ta-
ble I.Figure 2 also provides an overview of these simula-
tions and of existing public BHNS waveforms. The first
configuration is a system with mass ratio Q = 3 and
aligned BH spin χBH = 0.9, hereafter named Q3S9. The
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FIG. 1. Simulation Q4S9 at a time when ∼ 30% of the neutron star mass has been accreted by the black hole. Left: Matter
with density above 6 × 107 g/cm3, and apparent horizon of the black hole. Center: Finite difference grid, showing both mesh
refinement and the fact that the grid does not cover vacuum regions. Right: Inner region of the pseudospectral grid, showing
mesh refinement close to the black hole and in regions where dense matter is present. We only show points below the orbital
plane and within ∼ 15M of the black hole’s center. The pseudospectral grid extends to much larger distances (500M), using
spherical shells not shown on the figure. All three figures are taken from our lowest resolution simulation.

FIG. 2. Distribution of the BHNS simulations in the SXS cat-
alogue projected in the Q-χBH

‖ plane. Simulations from [12]
are red dots (SXS2019), while simulations from this work are
green dots (SXS2020). The region of parameter space covered
by 134 short waveforms from [7] is shown in grey (LEA). For
context, we also show the regions of parameter space where
(1.2− 1.6)M� neutron stars satisfying the equations of state
constraints of [29] always disrupt, disrupt for some equations
of state and/or neutron star masses only, or never disrupt,
according to the fitting formula from [30].

second is identical except for the choice of a mass ratio
Q = 4, and is named Q4S9. The last configuration has
a dimensionless BH spin χBH = 0.75, misaligned by 45◦

with the orbital angular momentum, and initially in the
plane formed by the orbital angular momentum vector
and the line connecting the center of the compact ob-
jects. The misalignment of the spin leads to significant
precession of the orbital plane of the binary. We label this
simulation Q3S75p. The initial orbital frequencies are
chosen to provide more than ∼ 12 orbits before merger,

TABLE I. Overview of the simulations presented in this pa-
per. MBH,NS are the ADM masses of the BH and NS in iso-
lation, χBH the initial dimensionless BH spin, e the initial
eccentricity, iBH the initial inclination of the BH spin with
respect to the orbital angular momentum vector, Λ̃ the ef-
fective dimensionless tidal deformability of the binary, Ω0 the
initial angular velocity, M = MBH+MNS the total mass, tpeak

the time at which the (2, 2) mode of the GW signal reaches
its maximum amplitude, and ∆xt=0

FD the initial spacing of the
finite volume grid.

Name MBH
MNS

χBH e iBH Λ̃ Ω0M
tpeak

M

∆xt=0
FD

MNS

Q3S9-L0 3 0.9 0.0004 0◦ 35.2 0.0236 2342.6 0.143
Q3S9-L1 3 0.9 0.0005 0◦ 35.2 0.0236 2346.8 0.114
Q3S9-L2 3 0.9 0.0005 0◦ 35.2 0.0236 2346.5 0.091
Q4S9-L0 4 0.9 0.0017 0◦ 15.3 0.0243 2661.7 0.143
Q4S9-L1 4 0.9 0.0018 0◦ 15.3 0.0243 2660.1 0.114
Q4S9-L2 4 0.9 0.0017 0◦ 15.3 0.0243 2660.2 0.091

Q3S75p-L0 3 0.75 0.0031 45◦ 35.2 0.0197 3473.5 0.143
Q3S75p-L1 3 0.75 0.0031 45◦ 35.2 0.0197 3469.9 0.114
Q3S75p-L2 3 0.75 0.0031 45◦ 35.2 0.0197 3472.3 0.091

and we find indeed that simulation Q3S9 evolves for 13.2
orbits before the peak of the dominant (2, 2) mode of the
GW signal, Q4S9 for 15.6 orbits, and Q3S75p for 16.3 or-
bits. By this metric, these 3 simulations are longer than
all but one of the existing public BHNS waveforms.6 [12]
In terms of the number of time steps required, which may
be more relevant to the growth of numerical errors, the
simulations presented here are significantly longer than
any public BHNS waveform.

As shown on Fig. 2, the initial conditions for our sim-
ulations are all in the regime where the neutron star is

6 The longest public BHNS waveform is a non-spinning, Q = 1.5
simulation evolved for 16.6 orbits
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strongly disrupted by the black hole – and would be dis-
rupted even for softer equations of state. The two high-
spin simulations are also out of the range of the SACRA
simulations used by Lackey et al (LEA) [7], which makes
them useful to test models of both the phase evolution
and tidal disruption of BHNS mergers. Our lower spin
waveform, on the other hand, has the advantage of be-
ing the only precessing system shown on Fig. 2. Less
effort has gone into the production of waveforms for non-
disrupting binaries, in part because our best simulation in
that regime [31], the Q = 6 simulation on Fig. 2, showed
that the resulting waveform could not be distinguished
from an equivalent BBH waveform, at least within our
numerical errors (or with any existing GW detector).

D. Waveform extraction

We use two independent methods to estimate the grav-
itational wave signal at infinity from the values of the
metric at finite radii. The first, used in all of our previous
BHNS publications, follows the procedure outlined by
Boyle & Mroue [32]. The Newman-Penrose scalar Ψ4 and
metric perturbation h are estimated on spheres of con-
stant inertial radii Ri (the latter using Regge-Wheeler-
Zerilli techniques), and decomposed into spin=−2 spher-
ical harmonics components. For each Ri, we then com-
pute a retarded time tret(t, Ri) approximately accounting
for the travel time of the wave from the merging compact
objects to Ri. We then fit the ansatz

Alm(tret, r) =

N∑
j=0

Alm,j(tret)r
−j (1)

φlm(tret, r) =

N∑
j=0

φlm,j(tret)r
−j (2)

to the amplitude Alm and phase φlm of the (l,m) com-
ponent of our spherical harmonics decomposition, at a
fixed set of retarded times. The (l,m) mode at infinity
is then estimated to be Alm,0e

iφlm,0 . This procedure can
be applied to either Ψ4 or h. In our simulations, we fit
this ansatz to the estimated values of h,Ψ4 at 20 radii
between 100M and 400M , equally spaced in r−1.

The second method is used here for the first time in
our fluid simulations. We perform Cauchy Character-
istic Evolution (CCE) [33–37] using the methods de-
scribed in Moxon et al [38], and implemented in the
open-source SpECTRE code.7 In CCE, we use the
evolution data on a surface of constant inertial radius
(R = 200M, 300M, 400M here) as boundary condition
for a non-linear evolution on a null foliation of the space-
time outside of that surface, propagating the signal to
null infinity. CCE carries to null infinity the Bondi news,

7 https://github.com/sxs-collaboration/spectre

and the SpECTRE implementation of CCE also provides
estimates of all five Weyl scalars and of the gravitational
wave strain – although with some caveats related to ini-
tial data and Bondi-Metzner-Sachs (BMS) freedom for
the latter, discussed in Sec. III C.

With these two methods at our disposal, we can more
carefully study the reliability of our estimates of the sig-
nal at null infinity.

The waveforms publicly released as part of the SXS
catalogue include two versions of the extrapolated signal.
The first contains the waveform in the inertial frame of
the simulation. The second corrects for the motion of the
center-of-mass of the binary, and provides the waveform
in the rest frame of the system (before merger) [39, 40].
This procedure avoids some mode mixing in all cases, and
is particularly useful for the precessing system: precess-
ing BHNS binaries generated with our initial data solver
have non-zero velocity in the direction perpendicular to
the initial orbital plane (∼ 0.001c) that can lead to sig-
nificant phase errors at merger (∼ 0.3 rad) simply due to
the change in the time-of-flight of the waveforms from the
binary to the observer. Comparisons between numerical
results and analytical models presented in this paper are
performed after removal of the center-of-mass motion.

III. RESULTS

A. Overview

The evolution of all three configurations proceed as
is typical for BHNS systems with moderate mass ratios
Q ∼ 2−4 and significant spins: the neutron star disrupts
well out of the innermost stable circular orbit of the black
hole, leading to mass ejection and the formation of a mas-
sive accretion disk (see Figs. 1-2). In these simulations,
however, we do not attempt to follow the evolution of the
post-merger remnant with enough accuracy to properly
measure the masses of the ejecta and post-merger accre-
tion disks, in part due to the high computational cost
of following rapid accretion by the black hole in BHNS
systems, and in part because the post-merger evolution
likely lacks realism when using a simple Γ = 2 ideal gas
equation of state. Once the neutron star disrupts, stop-
ping GW emission, we focus on following the propagation
of the GW signal to large distances.

The extrapolated GW signals obtained from our sim-
ulations are publicly available as part of the SXS cata-
logue, for extrapolation orders N = 2 − 5 and for mul-
tipoles up to l = 8. Figure 3 shows the h+ and h×
polarizations of the GW signals, for observers who are,
at t = 0, in the direction of the total angular momentum
of the binary, or perpendicular to that direction and in
the orbital plane. The clearest difference between these
BHNS waveforms and equivalent BBH waveforms is the
rapid cutoff in GW emission when the neutron star dis-
rupts. The other features of the signal are similar to BBH
systems: the signal in the direction of the total angular
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FIG. 3. GW strain for simulations Q3S9 (left), Q4S9 (center) and Q3S75p (right). Each plot shows results for an observer in
the direction of the total angular momentum (top, ‘face-on’ for non-precessing system) and from a direction that, at t = 0, is
orthogonal to the total angular momentum and within the orbital plane of the binary (bottom, ‘edge-on’ at t = 0). We show
both polarizations h+ (solid lines) and h× (dashed lines), and shift the average value of the strain for readability. The edge-on
signals clearly show the impact of mass asymmetry (oscillations in the maximum of the strain, due to a significant l = 3,m = 3
mode) and, for Q3S75p, precession (slow oscillation in the amplitude of the signal, non-zero value of h×). Q3S75p goes through
slightly more than half a precession cycle over the course of the simulation.

momentum of the system is entirely dominated by the
l = 2,m = ±2 modes and is thus a nearly feature-less
chirping signal. For non-precessing systems, the edge-on
signal shows more clearly the impact of unequal masses.
For Q3S75p, in addition to the mass asymmetry, the
precession of the orbital plane is clearly visible for the
initially ‘edge-on’ observer. The h× signal, in particu-
lar, clearly shows that the Q3S75p system goes through
slightly more than half a precession cycle during the sim-
ulation.

An important aspect of the BHNS binary systems pre-
sented here, as opposed to those previously published in
the SXS catalogue [12], is the impact of subdominant
modes on the signal. For the Q3S9 (resp. Q4S9) configu-
ration, the peak amplitude of the (3, 3) mode of the strain
is 18% (resp. 21%) of the peak amplitude of the dominant
(2, 2) mode. The (4, 4) mode has 7% (8%) of the peak
amplitude of the dominant mode, while other modes re-
main below 5% of the amplitude of the (2, 2) mode. For
Q3S75p, the precession of the orbital plane additionally
leads to the mixing of modes with the same l but different
m. All l = 2 and l = 3 modes then have significant am-
plitude. Accordingly, these new public waveforms should
be particularly useful to test the effect of higher-order
modes on detection and parameter estimation for BHNS
binaries.

B. Numerical accuracy

The main expected uses of our waveforms are testing
and calibrating analytical waveform models, and injec-
tion in detection and parameter estimation pipelines used

by GW observers. It is thus critical to provide careful,
conservative estimates of our errors, to avoid introduc-
ing systematic biases in these studies, and in upcoming
observations of BHNS binaries. In Foucart et al [12], we
proposed a standardized method to estimate phase er-
rors in SpEC BHNS waveforms that accounts for 3 main
sources of error: finite resolution, extrapolation of the
signal to infinity, and mass loss at the boundary of the
finite difference grid used to evolve neutron stars. We
summarize this method here, and plot the resulting error
estimates on Fig. 4, for the dominant (2, 2) mode of the
signal.

Finite-resolution errors are estimated by comparing
the results of our low (L0), medium (L1), and high (L2)
accuracy simulations. We first measure the phase dif-
ferences between L0 and L2, and estimate the error in
the L2 waveform using Richardson extrapolation to infi-
nite resolution. The extrapolation is performed assuming
2nd-order convergence, a relatively conservative estimate
considering that the methods used in our simulations are
typically at least 3rd order convergent. We then per-
form the same calculation, but using the results of the
L1 and L2 simulations. At any time, the worst of these
two error estimates is assumed to be the finite-resolution
error. We note that we need this comparison because
in the hybrid spectral/finite volume algorithm used in
SpEC, different parts of the evolution may dominate the
error budget at different times. Unfortunately, as a result
the sign of the phase difference between two simulations
may change over the course of the evolution, leading to
occasional cancellations of the error estimates based on
2 resolutions only. On the other hand, we have found
that the more complex error estimate described here has
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FIG. 4. Estimates of the phase error for the (2, 2) mode of the
GW signal in each simulation. We include the impact of mass
losses (ΦdM), extrapolation error (Φext), and grid resolution
(Φdis), following the methods described in [12] and Sec. III B.
The vertical dot-dashed curves indicate tpeak.

provided us with conservative estimates of the numerical
error whenever improved numerical methods / increased
computational resources have allowed us to test it against
higher accuracy results.

Extrapolation errors are estimated by measuring the
phase difference between 2nd order and 3rd order ex-
trapolation between t = 0 and tpeak (the time when the

amplitude of the (2, 2) mode of the GW signal is maxi-
mum, see Table I). The maximum phase difference over
that time span is taken as the extrapolation error. This
is a very conservative choice that was made largely be-
cause, as opposed to BBH simulations, BHNS simula-
tions do not show clear convergence of the extrapolated
waveform with the chosen extrapolation order. This has
not been much of an issue so far, as extrapolation errors
remained much smaller than finite resolution errors [12].
Fig. 4 shows that this is no longer the case in these new
simulations. We thus perform a more in-depth study of
extrapolation errors in the following section, that indi-
cates that extrapolation using a 2nd order polynomial
in 1/r leads to extrapolation errors that are significantly
smaller than those shown in Fig. 4.

Finally, a small mass loss at the boundary of our fi-
nite difference grid could lead to an error in the mass of
the neutron star, and thus in the phase evolution of the
system. However, none of the simulations presented here
loses more than 10−4M� over the course of the binary
inspiral, and the phase error due to mass loss at grid
boundaries is thus negligible.

Overall, we note that the phase error at tpeak is
(0.2− 0.4) rad and limited by the finite resolution of the
simulation, while during inspiral it is . 0.1 rad and lim-
ited by the estimated extrapolation error. We will how-
ever see in Sec. III C that the true extrapolation error is
nearly certainly significantly smaller than what is shown
on Fig. 4. We keep the estimate on Fig. 4 to allow for di-
rect comparisons with our previous waveforms [12]. Only
one simulation from [12] has smaller phase errors, and
it is an equal mass, non-spinning configuration that is
significantly easier for our code to evolve, and slightly
shorter (in number of orbits) than the simulations pre-
sented here.

We can also estimate the uncertainty in the amplitude
of the GW signal in our simulations. Fig. 5 shows relative
differences between the amplitude of the (2, 2) mode of
the waveforms at different resolutions, and using different
extrapolation orders. We see that the errors are small
(typically . 1%), especially when compared to current
calibration uncertainties in GW detectors (e.g. 7%−10%
for GW170817 [3]). Finite-resolution errors often appear
negligible when compared to extrapolation errors. This
is because the main error due to finite resolution is a
small shift of the time required for binaries to orbit /
inspiral. This has a much larger effect on the phase of
the gravitational wave signal than on its slowly-varying
amplitude.

Very similar results are found for higher-order (l,m)
modes, except that the phase error is multiplied by l/2,
i.e. the ratio of the frequency of the (l,m) mode and the
frequency of the (2, 2) mode. This is once more a con-
sequence of the fact that the dominant source of error is
a slight change in the evolution timescale of the system.
The resulting time shift in the waveform is the same for
all modes, and the associated phase error is thus pro-
portional to the frequency of the mode. Relative errors
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FIG. 5. Estimates of the relative error in the amplitude of
the (2,2) mode of the GW signal for each simulation. From
top to bottom, we show results for Q3S9, Q4S9, and Q3S75p.
Dashed curves show comparisons between the amplitude ob-
tained with different numerical resolutions (L0, L1, L2), while
the solid curves show comparisons between the amplitude for
different extrapolation orders (N2, N3, N4). The vertical dot-
dashed curves indicate tpeak. We clearly see that extrapola-
tion is the main source of error when estimating the GW
amplitude. Amplitude errors are . 1%, except for simulation
Q4S9 at the time of merger.

FIG. 6. Difference in the phase of the (2,2) mode for various
estimates of Ψ4 in system Q3S9, after application of a time
and phase shift minimizing the phase error in the window
t ∈ [500, 2300]. We show phase differences between our nu-
merical resolutions (L0,L1,L2), between different extrapola-
tion orders (N2,N3,N4, for the highest resolution simulation),
and between the highest resolution simulation with N = 3
and the waveforms obtained using CCE from data extracted
at R = 200M (Cce2), R = 300M (Cce3), and R = 400M
(Cce4). We see very good agreement between the various
CCE waveforms, and between N = 2 extrapolation (solid
blue curve) and CCE.

in the amplitude of the signal only increase slightly for
higher order modes (see e.g. Figs 9-11 in the next sec-
tion). The absolute error in the amplitude of the signal
is thus dominated by the error in the dominant l = 2
mode(s) for most binary orientations.

C. Extrapolation errors and Cauchy Characteristic
Evolution

The previous section showed that extrapolation errors
may significantly contribute to our error budget. How-
ever, extrapolation errors are difficult to assess: there is
no clear improvement as the order of extrapolation in-
creases, and in fact errors tend to grow beyond N = 4
extrapolation. In this section, we will argue that N = 2
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FIG. 7. Same as Fig. 6, but for the (2, 2) mode in the Q4S9
configuration. We find very similar results, including very
good agreement between all CCE results and the N = 2 ex-
trapolation results.

extrapolation is more accurate than our previous esti-
mates would indicate. The main argument to that effect
is a direct comparison of the GW signals obtained us-
ing extrapolation, and those obtained using CCE. We
begin with a study of the Weyl scalar Ψ4 (proportional
to the second time derivative of the strain), for reasons
that will become clear below. Fig. 6 shows the phase and
amplitude differences between all wave extraction meth-
ods for case Q3S9, and Fig. 7 provides the same infor-
mation for case Q4S9. Differences between simulations
at 3 resolutions are also shown for reference. We note
that CCE does not provide an absolute value of the time
that can be used consistently for all waveforms, due to
the unknown travel time between the inner boundaries
of the various CCE evolution systems, and the differ-
ences between the simulation time of extrapolation and
the asymptotically inertial time of CCE. Accordingly, all
comparisons in this section are performed after applica-
tion of a time and phase shift to the waveforms, chosen to
minimize the phase difference before merger. Phase dif-
ferences between waveforms using different resolution are
naturally smaller than without alignment, to the point
that after alignment differences between extrapolation

FIG. 8. Imaginary part of the (2,2) mode of the GW strain
(h× polarization) using CCE extraction from R = 400M and
extrapolation with N = 3. The dotted line show the ampli-
tude of the signal (

√
|h|2). In the CCE results, the average

value of the strain is shifted away from 0 during the first
∆t ∼ 1000M .

methods are at least of the same magnitude as differences
between numerical resolutions. However, both case show
two important results: all CCE waveforms are in very
good agreement with each other (. 0.01 rad phase dif-
ference and . 0.1% amplitude error), and all CCE wave-
forms agree well with N = 2 extrapolation. As Ψ4 is
expected to be recovered to high accuracy by CCE, this
is a first indication that N = 2 extrapolation provides
accurate predictions for the GW signal at infinity.

Gravitational wave detectors, however, measure a pro-
jection of the complex strain h = h+ + ih×, not Ψ4. Un-
fortunately, CCE predictions for h suffer from a small
drift in the average value of the strain over the first
1000M of evolution, illustrated in Fig. 8. In Fig. 8, the
average value of h× increases, eventually leading to a
constant shift between the CCE and extrapolated results
for t > 1000M , and visible oscillations in the inferred
amplitude and phase of the GW signal.

This issue remains under investigation, although the
likely cause of the early slow drift and late constant shift
in the CCE strain is incomplete CCE initial data and
a corresponding maladapted BMS frame. The evolution
performed by CCE on outgoing null slices has a simi-
lar, but somewhat less dramatic, initial-data problem as
the central Cauchy simulation: the accumulated effect
of the past inspiral is difficult to estimate, and therefore
transient effects appear during the early stage of the sim-
ulation. These initial data transients occur on a longer
timescale than the Cauchy junk, due to the larger char-
acteristic scale of the system. The CCE scale is set by
the extraction radius, rather than the orbital scale of the
compact merger. Finally, the initial transient leaves a
lasting imprint on the CCE strain as an erroneous ‘mem-
ory’ contribution.

This issue can be partially negated by applying a con-
stant offset to h+, h×, chosen to zero the average of the
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FIG. 9. Same as Fig. 6, but for the (2, 2) mode of the GW
strain. For all CCE waveforms, we subtract a constant value
from the strain (see text). Early-time oscillation in the CCE
results are due to the initial drift in the average value of the
GW strain.

strain over a given time interval. Fig. 9 shows phase
and amplitude differences for the strain for case Q3S9,
with the averaging performed over 8 GW cycles imme-
diately following t = 1000M . Large oscillations due to
the drift in the strain dominate the errors, but once we
make abstraction of this issue, results are similar to what
we obtained for Ψ4: the various CCE waveforms are very
consistent with each other, and agree well with N = 2 ex-
trapolation. The oscillations observed at the frequency
of the GW signal in Fig. 9 can be avoided by apply-
ing a highpass filter on all compared signals, as shown
in Fig. 10. While this confirms the origin of the phase
error, this filtered signal cannot be substituted for the
original signal when performing model comparisons; in
our attempts to filter the signal, no filter could remove
the phase error due to the drift in the average value of
the strain without introducing larger phase differences as
a result of the filtering itself.

Finally, we can follow the same procedure, but for the
(3, 3) mode of the strain. Fig. 11 shows the resulting
differences between extrapolated and CCE waveforms.
Higher-order modes have very low amplitude early in the

FIG. 10. Same as Fig. 9, but after applying a highpass filter
to all signals to remove the drift in the average value of the
strain (10th order Butterworth filter with critical frequency of
0.002M−1 ≈ 72 Hz). We note that this filter leads to changes
in the phase of the signal that are larger than any of the
errors displayed here; this plot indicates that most of the error
observer in Fig. 9 is indeed due to a slow drift in the average
value of the strain, but the filtering does not provide us with
a better waveform template.

evolution of the binary, when the drift in the CCE strain
occurs, and this appears to mitigate issues with the CCE
method. As for Ψ4 and the dominant mode of the strain,
we find good agreement between all CCE waveforms and
N = 2 extrapolation.

We can also gain some confidence in the accuracy of
N = 2 extrapolation by studying how robust extrapo-
lation results are when the finite radii used by the fits
change. This is illustrated in Fig. 12, where we show the
results of N = 2, 3, 4, 5 extrapolation at a given retarded
time (t = 3000M) using all 20 finite radii, dropping the
4 radii farthest from the binary, and dropping the 8 radii
farthest from the binary. High-order extrapolation ap-
pears to be significantly impacted by noise in the finite
radius measurements, leading to visibly problematic ex-
trapolation functions (e.g. non-monotonous behavior of
A(r)). On the other hand, N = 2 extrapolation provides
very consistent results. While we find that the exact
behavior of the higher-order extrapolation methods de-
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FIG. 11. Same as Fig. 9, but for the (3, 3) mode of the GW
strain. The CCE method provides much better result for this
mode, with great self-consistency between CCE results using
different extraction radii, and small differences between CCE
and N = 2 extrapolation.

pends on the choice of retarded time under consideration,
the robustness of N = 2 extrapolation does not.

As a result of this exploration of CCE and waveform
extrapolation, we can revisit our estimates for extrapo-
lation errors, and recommendation for the ‘best’ extrap-
olated waveform to use. The CCE waveforms (evolved
from 3 different radii) and N = 2 extrapolation provide
results consistent to better than 1% in the amplitude of
the waveform, and better than 0.01 radian in its phase af-
ter alignment of the waveforms using an appropriate time
and phase shift, and ignoring oscillations due to the drift
in the average value of the strain in CCE. For applica-
tions where waveform alignment is necessary (e.g. com-
parisons with analytical models, hybridization,...), this
should provide us with appropriate estimates of the ex-
trapolation error as long as we use N = 2 extrapolation,
and not higher order methods. Comparing N = 2 and
N = 3 extrapolation provides a reasonable upper bound
on the extrapolation error with N = 2 if that comparison
is performed over the entire duration of the simulation.

D. Comparison with analytical models

With these error estimates in mind, we now move to
a short investigation of the agreement between our nu-
merical waveforms and commonly used waveform models
in data analysis. We note than an in-depth study of
modeling uncertainties goes beyond the scope of this pa-
per. Here, we are mostly interested in providing a broad
overview of the impact that various modeling choices
and the physical effects of precession, higher modes,
tidal effects during inspiral, and tidal disruption have on
the agreement between numerical and analytical wave-
forms. We consider the following models, where the
string ‘IMRPhenom’ indicates a model in the family of
phenomenological inspiral-merger-ringdown BBH models
in the frequency-domain [41–49], and ‘SEOBNR’ a model
in the family of time-domain inspiral-merger-ringdown
BBH models based on the Effective-One-Body formalism
and calibrated to numerical simulations [50–65]:

• IMRPhenomXAS [66]: an aligned-spin BBH model
that only includes the dominant (2,±2) modes of
the strain

• IMRPhenomXP [67]: a BBH model that only in-
cludes the dominant (2,±2) modes of the strain and
accounts for the main features of precession

• IMRPhenomXHM [68]: an aligned-spin BBH
model that includes higher-order modes

• IMRPhenomXPHM [67]: a BBH model that in-
cludes higher-order modes and the main features
of precession

• SEOBNRv4 [56]: an aligned-spin BBH model that
uses only the dominant (2,±2) modes to determine
the strain

• SEOBNRv4P [69]: a BBH model that includes pre-
cession by describing all six spin degrees of freedom
throughout the BBH coalescence, but uses only the
dominant (2,±2) modes to determine the strain

• SEOBNRv4HM [70]: an aligned-spin BBH model
that includes higher-order modes

• SEOBNRv4PHM [69]: a BBH model that includes
higher-order modes and precession by describing all
six spin degrees of freedom throughout the BBH
coalescence

• IMRPhenomPv2 NRTidalv2 [71]: a model whose
BBH baseline includes the main features of preces-
sion that also incorporates tidal effects based on
calibrating analytical results to numerical simula-
tions of NSNS binaries [71–74], but not higher order
modes. This model only describes the inspiral, with
the signals tapered to zero at the NSNS merger
frequency predicted by numerical simulations, and
does not attempt to model the disruption of a neu-
tron star by a black hole companion.
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FIG. 12. Amplitude of the (2, 2) mode of the GW strain at a retarded time t = 3000M for simulation Q3S9-L2. We show the
values estimated at finite radii (normalized to Rmin = 100M), and the extrapolation polynomials of order N = 2, 3, 4, 5. From
left to right, we show extrapolation functions fitted to data at all 20 radii used by our simulation, the 16 smallest radii of that
set, and the 12 smallest radii of that set (only the N = 3 results is distinguishable from the others on the middle panel). While
low-order extrapolation provides consistent and visually reasonable results, higher order extrapolation is less reliable. This can
be contrasted with results in vacuum simulations, where results converge to a well-defined answer as N increases.

TABLE II. Faithfulness of analytical models to the numerical results, for the + polarization of the gravitational wave signal.
For each case, we consider face-on observation (F suffix) and edge-on observation (E) suffix. All faithfulnesses are computed
using the pyCBC library, as discussed in more detail in the text. We also provide the frequency flow used as a lower bound for
the calculation of the faithfulness, and the SNR of the part of the signal above flow for systems at a distance of 100 Mpc. All
calculations are performed using the Zero-Detuned High-Power noise power spectrum of LIGO.

Model Q3S9-F Q3S9-E Q4S9-F Q4S9-E Q3S75p-F Q3S75p-E
flow [Hz] 300 300 250 250 300 300

SNR [100Mpc] 12.5 5.9 16.7 7.9 11.7 5.1

IMRPhenomXAS 0.972 0.957 0.981 0.955 0.988 0.917
IMRPhenomXP 0.969 0.955 0.976 0.951 0.986 0.959

IMRPhenomXHM 0.971 0.964 0.979 0.967 0.987 0.928
IMRPhenomXPHM 0.968 0.961 0.974 0.962 0.987 0.964

SEOBNRv4 0.966 0.952 0.976 0.950 0.987 0.915
SEOBNRv4P 0.966 0.952 0.976 0.951 0.970 0.955

SEOBNRv4HM 0.966 0.956 0.976 0.946 0.987 0.929
SEOBNRv4PHM 0.966 0.957 0.976 0.962 0.971 0.932

IMRPhenomPv2 NRTidalv2 0.985 0.972 0.969 0.947 0.984 0.957
SEOBNRv4T 0.977 0.963 0.983 0.956 0.976 0.872

IMRPhenomNSBH 0.991 0.977 0.994 0.969 0.992 0.904
SEOBNRv4 ROM NRTidalv2 NSBH 0.988 0.973 0.991 0.966 0.992 0.900

• SEOBNRv4T [14, 75]: an aligned-spin model that
includes analytical descriptions of tidal effects, but
not higher-order modes. This model only describes
the inspiral, with the signals tapered to zero at
the NSNS merger frequency predicted by numer-
ical simulations, and does not attempt to model
the disruption of a neutron star by a black hole
companion.

• IMRPhenomNSBH [8]: an aligned-spin model
specifically designed for BHNS binaries: it includes
both tidal effects from [71] and the disruption of

the neutron star by the black hole. The model does
not include higher-order modes.

• SEOBNRv4 ROM NRTidalv2 NSBH [9]: an
aligned-spin model specifically designed for BHNS
binaries based on a reduced-order-model approx-
imation to the frequency-domain BBH signals
predicted by the SEOBNRv4 model: it includes
both tidal effects from [71] and the disruption of
the neutron star by the black hole. The model
does not include higher-order modes.

These models are generally representative of the latest
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iteration of the IMRPhenom and SEOBNR models (for
recent models within another family of effective one body
models see e.g. [76–78]). To determine the agreement
between a model and numerical simulation, we calculate
the faithfulness

F (h1, h2) = max
tc,φ0

(
〈h1, h2〉√

〈h1, h1〉〈h2, h2〉

)
(3)

with

〈h1, h2〉 = 4Re

∫ fhigh

flow

df
h∗1(f)h2(f)

Sn(f)
(4)

and Sn(f) the one-sided power spectral density of the
detector noise. Here, we take fmax to be very large
(∼ 100 kHz), and set flow to a value sufficiently large
to avoid artifacts due to the finite length of the numeri-
cal simulations (250 Hz for the Q = 4 system, and 300 Hz
for the Q = 3 systems). The faithfulness is calculated
using the pyCBC library [79], and that same library is
used to generate the waveform models. Table II shows
the faithfulness of the various analytical models to the
highest-resolution numerical simulation (using N = 2 ex-
trapolation). We calculate F for the + polarization of the
waveform and for observers located along the direction
of the total angular momentum of the system (face-on)
and in a direction orthogonal to the total angular mo-
mentum (edge-on). We note that the faithfulness of the
low-resolution simulation to the high-resolution simula-
tion is F > 0.9999 for all configurations and orientations,
much larger than the faithfulness of any of the models.

For the precessing simulations, defining the initial
spins require a few additional assumptions. For models
that only include aligned spins, we define the black hole
spin as the component of the spin aligned with the or-
bital angular momentum at the beginning of the numeri-
cal simulation. For models that do include precession, we
also have to maximize F over the phase of the precession
of the spin at a reference frequency, or over the reference
frequency at which the spin is defined (depending on the
inputs of the model).

We also calculate the SNR
√
< h, h > of the numerical

waveform above flow for a binary located at 100 Mpc, to
put the faithfulness numbers into context. We note that
this is not the SNR of the full BHNS waveform, as a
large fraction of the SNR is at frequency f < flow. All
faithfulness and SNR results are summarized in Fig. II.

We can see some clear trend in these tabulated results.
For systems observed face-on, the two models specifically
designed for BHNS systems perform noticeably better,
with F & 0.99. Including tidal effects without account-
ing for the disruption of the neutron star helps for the
Q3S9 system (F ∼ 0.98 for the tidal models, F ∼ 0.97
for the BBH models), but has no noticeable impact on
the faithfulness for Q4S9 and Q3S75p. The use of higher-
order modes and/or precession does not seem to impact
F when a system is observed face-on. The faithfulness is
generally lower for systems observed edge-on rather than

face-on. The IMRPhenomX BBH models also inidicates
that for edge-on systems, F improves when including
higher-order modes and, for the precessing binary, when
including precession. With the SEOB models, higher-
order modes help us improve F for the non-precessing
systems, and including precession helps with the precess-
ing system – but the model that include both effects actu-
ally perform worse than the precession-only and higher-
mode only models. Finally, going from Q3S9 to Q4S9 to
Q3S75p, the impact of tides decreases while the impact
of higher-order modes / precession increases. As a re-
sult, the non-precessing tidal models (SEOBNRv4T, IM-
RPhenomNSBH, SEOBNRv4 ROM NRTidalv2 NSBH)
become less faithful, down to just F ∼ 0.90 for Q3S75p.
We note however that it is perfectly possible that an an-
alytical waveform with parameters reasonably close to
Q3S75p would provide a good match to the numerical
results – we do not here attempt to find the best match-
ing waveform, but only look at the faithfulness of the
waveform for fixed initial conditions.

We can glean more information about the strengths
and limits of various models by looking at Figs 13-14.
The amplitude plots best capture the impact of the mod-
els specifically designed for BHNS systems. The ampli-
tude of the signal is very well captured for Q3S75p. For
Q3S9, a system with a black hole spin higher than those
used to calibrate BHNS models, the agreement is a little
worse, but still noticeably better than for systems that do
not account for the disruption of the neutron star. The
phase errors for Q3S9 show the importance of including
tidal phase corrections in the models. This is very differ-
ent from our results for Q3S75p, for which the inclusion
of precession and higher-order modes improves the phase
accuracy far more than the inclusion of tidal effects.

We also note that nearly identical results are obtained
when comparing the second time derivative of the strain
from analytical models to the CCE results for Ψ4, indi-
cating that one way to get around the drift in the strain
when using CCE results to calibrate models could be to
directly use Ψ4 when performing these calibrations.

IV. CONCLUSIONS

We presented a new set of long, high-accuracy BHNS
waveforms generated using the SpEC code, which are
now publicly available. These waveforms sample regions
of parameter space not covered by existing waveforms:
high black hole spins, and one precessing system. All
simulations are quite long by the standard of BHNS evo-
lutions (> 13 orbits), and are of high accuracy in both
phase (0.2− 0.4 rad at merger) and amplitude (∼ 1% er-
rors). They should thus be particularly helpful for testing
and calibrating future BHNS waveform models.

In previous BHNS simulations, errors due to the ex-
trapolation of the waveform to infinity were typically neg-
ligible even when using conservative error estimates. We
find that this is no longer the case with our latest sim-
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FIG. 13. Top: Amplitude of the complex strain h = h+ + ih×
for system Q3S9 seen face-on. We show results for our low-
and high-resolution simulations, for the two BHNS models,
as well as for one tidal model that does not include neutron
star disruption and one BBH model that includes precession
and higher-order modes.Bottom: Phase difference between
the models and the high-resolution numerical result. All sig-
nals are aligned by minimizing the phase difference in the time
interval t ∈ [500, 2000]M .

ulations. Accordingly, we perform a more careful study
of extrapolation errors by comparing waveform extrap-
olation to CCE. Results for Ψ4 at null infinity indicate
very good agreement between CCE initialized from dif-
ferent simulation radii, and between CCE and low-order
(quadratic) extrapolation. Similar results appear to hold
for the strain h, up to a drift in the time-averaged value
of h that appears when using CCE. Higher-order ex-
trapolation appears less reliable. Overall, we conclude
that while extrapolation errors remain small (compared
to finite-resolution errors) in our simulations when us-
ing quadratic extrapolation, one should avoid the use of
higher-order methods in BHNS SpEC simulations. More
practically, we thus recommend users of our waveform
catalogue to take the highest resolution simulation with
quadratic extrapolation (N = 2) as our ‘best’ waveform
when multiple resolutions and/or extrapolation orders
are available.

Finally, we compute the faithfulness to our simulation

FIG. 14. Same as Fig. 13, but for system Q3S75p.

of a range of existing binary black hole models, binary
neutron star models, and BHNS models. We focus on the
high frequency portion of the signal that can be studied
directly with our numerical waveforms. We find that for
face-on observations, two recent BHNS models perform
quite well – as already demonstrated in [9] for our non-
precessing systems. The inclusion of higher-order modes
and/or precession effects is less crucial to high faithful-
ness at high frequency. A more careful study of phase
errors however indicates that even for observations along
the total angular momentum of the system, the inclusion
of precessional effects can help reduce phase differences
with respect to our precessing system. For non-precessing
systems observed edge-on, higher-order modes and tidal
effects are both significant. Finally, for the precessing
system observed edge-on, only a few of the models used
here manage to reach faithfulness & 0.95 (all of them
precessing models), and no model reaches faithfulness
> 0.97. Thus, there certainly remain important improve-
ments that could be made to BHNS models by combining
recent progress in the modeling of finite size effects with
state-of-the-art results for precession in black hole bina-
ries.
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[36] M. C. Babiuc, B. Szilágyi, J. Winicour, and Y. Zlo-

chower, Phys. Rev. D 84, 044057 (2011), arXiv:1011.4223
[gr-qc].

[37] C. J. Handmer and B. Szilágyi, Class. Quantum Grav.
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