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The mineral chemistry and the detailed microstructure 
of seven eucrites (A-881394 [e.g. 1-2], Y-791195 [e.g. 3], 
Y-981617, Y-790266 [e.g. 4], Y-791186 [e.g. 4-5], Y-792510 
[e.g. 4-5] and Y-793591) of the NIPR collection of Antarctic 
meteorites have been examined in order to constrain their 
modal mineralogy and chemistry and to explore the 
potential of microstructural analysis as a new tool for 
interpreting meteorites.  

The minerals major element composition was analyzed 
with a Cameca SX 100 electron microprobe while a 
universal stage [e.g. 6] allowed measuring true dihedral 
angles [e.g. 7-8-9] in thin-sections (Figure 1). ImageJ, Gimp 
and GEOrient softwares were also used to produce 
elemental maps, to calculate modal mineralogy, 
aspect-ratios [e.g. 10] and fabric strengths [e.g. 11]. 

Our results are in agreement with previous work [e.g. 
1-2-3-4-5]. Three meteorites, Y-792510, Y-791186 and 
Y-793591, are brecciated basaltic eucrites with a subophitic 
texture characterised by plagioclase and/or cloudy pyroxene 
grains set in dark comminuted matrixes. Y-981617 is a 
typical cumulate eucrite but the classification of the 
remaining three is less obvious. A-881394 and Y-791195 are 
granulitic whereas Y-790266 features a coarse-grained 
texture with abundant irregular and sub-rounded interstitial 
areas. There is some variability in the modal mineralogy of 
these samples. The proportion of pyroxene and plagioclase 
ranges from 41.4 (A-881394) to 60.7 (Y-791186) and from 
33.6 (Y-791186) to 50.1 (A-881394) respectively. 
 

 
Figure 1. Left – the dihedral angle Ө formed at the three-grain 
junction by equilibration of the interfacial energies. Right – 
texturally equilibrated amphibole. White lines point out the 
tangents to the curved grain boundaries. The dihedral angle at this 
three-grain junction must be measured between the tangents [9]. 
 

The mineral chemistry demonstrates that all eucrites 
with the exception of Y-790266 are equilibrated (types 4-6) 
and highly metamorphosed with Y-791195 being the most 
metamorphosed sample. A qualitative assessment of the 
extent of equilibration of primary igneous textures was also 
made from a consideration of microstructure. Only the 
unbrecciated eucrites were used for this. Indeed, 
discrimination between different degrees of equilibration is 
possible by using the median of the population of 
pyroxene-plagioclase-plagioclase dihedral angles, with 
greater equilibration resulting in high dihedral angles [e.g. 
7-8-9]. These medians can thus be used to place the 
unbrecciated samples in order of increasing metamorphism 
within a single coherent classification scheme. Analysis of 
lattice orientations of plagioclase grains in granulitic 
eucrites (A-881394 and Y-791195) suggests that these 
highly equilibrated meteorites were once cumulates, with a 
strong preferred orientation of elongate plagioclase. 
Subsequent thermal metamorphism led to the 
recrystallization and formation of a granular microstructure 
without the rotation of the original preferred lattice 
orientation of the plagioclase.  

Based on the mineral chemistry and the texture of 
Y-791195 and Y-790266, we suggest including a third class 
of gabbroic eucrites in the usual two-fold classification of 
eucrites into cumulate and non-cumulate [e.g. 12-13]. This 
third type is characterised by an evolved composition 
similar to the basaltic eucrites but has an intrusive 
microstructure with medium to coarse grain size formed by 
slow cooling in a sub-surface environment. 
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