153 research outputs found

    Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea)

    Get PDF
    Arkona Basin (southwestern Baltic Sea) is a seasonally-hypoxic basin characterized by the presence of free methane gas in its youngest organic-rich muddy stratum. Through the use of reactive transport models, this study tracks the development of the methane geochemistry in Arkona Basin as this muddy sediment became deposited during the last 8 kyr. Four cores are modeled each pertaining to a unique geochemical scenario according to their respective contemporary geochemical profiles. Ultimately the thickness of the muddy sediment and the flux of particulate organic carbon are crucial in determining the advent of both methanogenesis and free methane gas, the timescales over which methanogenesis takes over as a dominant reaction pathway for organic matter degradation, and the timescales required for free methane gas to form

    Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15 degrees 38'S and 27 degrees 57'S (Angola and Namibia)

    Get PDF
    Sulfate reduction rates in the surface sediments from 17 stations from an along-slope transect (1,300 m) and from a cross-slope transect (855-4,766 m) were determined in the continental margin sediments of the Benguela Upwelling system. Profiles at all sites in the upwelling area showed increasing sulfate reduction rates from near zero at the surface to a peak at 2-5 cm (up to 29 nmol cm(-3) d(-1)) and then decreasing exponentially with depth to near background rates at 10-20 cm depth (<2 nmol cm(-3) d(-1)). Depth-integrated sulfate reduction rates were greatest at 1,300 m and decreased exponentially with water depth. Along the transect following the 1,300-m isobath, depth-integrated sulfate reduction rates were highest in the north Cape Basin (1.16 +/- 0.23 mmol m(-2) d(-1)), decreased over the Walvis Ridge (0.67 +/- 0.02 mmol m(-2) d(-1)), and were lowest in the south Angola Basin (0.31 +/- 0.23 mmol m(-2) d(-1)). Depth-integrated sulfate reduction rates were consistent with the known pattern of coastal upwelling intensities and were also strongly correlated with surface organic carbon concentrations. Sulfate reduction rates, both as a function of depth and in comparison with sediment trap data, indicated that lateral downslope transport of organic carbon occurs. Sulfate reduction was estimated to account for 20-90% of the published rates of total oxygen consumption for the sediments at 1,300 m depth and 3-16% of sediments from 2,000 to 3,000 m depth. Comparison of the sulfate reduction rate profiles with the published diffusive oxygen uptake rates showed that the kinetics of oxygen utilization in the surface sediments are much faster than those for anaerobic organic carbon remineralization, although the underlying cause of the difference was not clear

    Contributions to variability of clinical measures for use as indicators of udder health status in a clinical protocol

    Get PDF
    A cross-sectional observational study with repeated observations was conducted on 16 Danish dairy farms to quantify the influence of observer, parity, time (stage in lactation) and farm on variables routinely selected for inclusion in clinical protocols, thereby to enable a more valid comparison of udder health between different herds. During 12 months, participating herds were visited 5 times by project technicians, who examined 20 cows and scored the selected clinical variables. The estimates of effect on variables were derived from a random regression model procedure. Statistical analyses revealed that, although estimates for occurrence of several the variables, e.g. degree of oedema, varied significantly between observers, the effects on many of these estimates were similar in size. Almost all estimates for occurrences of variables were significantly affected either parity and lactation stage, or by both e.g. udder tissue consistency. Some variables, e.g. mange, had high estimates for the farm component, and others e.g. teat skin quality had a high individual component. Several of the variables, e.g. wounds on warts, had a high residual component indicating that a there still was a major part of the variation in data, which was unexplained. It was concluded that most of the variables were relevant for implementation in herd health management, but that adjustments need to be made to improve reliability

    Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments

    Get PDF
    A reactive-transport model has been applied to investigate the dynamics of the sulfate-methane transition zone (SMTZ) in nearshore sediments of Aarhus Bay (Denmark). The sediments are influenced by seasonal variations of temperature and particulate organic carbon (POC) deposition flux at the sediment-water interface. Initially, the model was calibrated at steady state using field data collected at two sites (M1 and M5) in December 2004, and included a dynamic gas phase which determines the depth of the SMTZ. Simulations were then performed under transient conditions of heat propagation in the porous medium, which influenced the solubility of gaseous methane, the diffusion of solutes as well as the kinetic and bioenergetic constraints on redox conditions in the system. Results revealed important variations in local rates of anaerobic oxidation of methane (AOM) over a seasonal cycle due to temperature variation. Seasonal perturbations in POC depositional flux had no influence on AOM rates but did have a strong bearing on sulfate reduction rates in the surface layers of the simulations at both stations. At M5, where the SMTZ was located 63 cm below the sediment-water interface, depth integrated AOM rates varied between 76 and 178 nmol cm-2 d-1. At M1, where the deeper SMTZ (221 cm) experienced less thermal variation, AOM rates varied relatively less (20 to 24 nmol cm-2 d-1). Furthermore, local and depth-integrated AOM rates over the year did not show a simple response to bottom water temperature but exhibited a hysteresis-type behavior related to time lags in solute transport and heat propagation. Overall, the solute concentration profiles were not very sensitive to the seasonal variability in rates or gas transport and the modeled vertical displacement of the SMTZ was limited to <1 cm at M1 and 2–3 cm at M5. The results suggest that the significantly larger apparent displacement observed in the field from repeated coring (80 cm and 16 cm at M1 and M5, respectively) must be attributed to other factors, of which spatial heterogeneity in gas transport rate appears to be the most likely

    A low frequency multibeam assessment: Spatial mapping of shallow gas by enhanced penetration and angular response anomaly

    Get PDF
    This study highlights the potential of using a low frequency multibeam echosounder for detection and visualization of shallow gas occurring several meters beneath the seafloor. The presence of shallow gas was verified in the Bornholm Basin, Baltic Sea, at 80 m water depth with standard geochemical core analysis and hydroacoustic subbottom profiling. Successively, this area was surveyed with a 95 kHz and a 12 kHz multibeam echosounder (MBES). The bathymetric measurements with 12 kHz provided depth values systematically deeper by several meters compared to 95 kHz data. This observation was attributed to enhanced penetration of the low frequency signal energy into soft sediments. Consequently, the subbottom geoacoustic properties contributed highly to the measured backscattered signals. Those appeared up to 17 dB higher inside the shallow gas area compared to reference measurements outside and could be clearly linked to the shallow gas front depth down to 5 meter below seafloor. No elevated backscatter was visible in 95 kHz MBES data, which in turn highlights the superior potential of low frequency MBES to image shallow sub-seafloor features. Small gas pockets could be resolved even on the outer swath (up to 65°). Strongly elevated backscattering from gassy areas occurred at large incidence angles and a high gas sensitivity of the MBES is further supported by an angular response analysis presented in this study. We conclude that the MBES together with subbottom profiling can be used as an efficient tool for spatial subbottom mapping in soft sediment environments

    Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes

    Get PDF
    Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community

    Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO₂ storage site before CO₂ arrival

    Get PDF
    Reactive iron (Fe) oxides and sheet silicate-bound Fe in reservoir rocks may affect the subsurface storage of CO2 through several processes by changing the capacity to buffer the acidification by CO2 and the permeability of the reservoir rock: (1) the reduction of three-valent Fe in anoxic environments can lead to an increase in pH, (2) under sulphidic conditions, Fe may drive sulphur cycling and lead to the formation of pyrite, and (3) the leaching of Fe from sheet silicates may affect silicate diagenesis. In order to evaluate the importance of Fe-reduction on the CO2 reservoir, we analysed the Fe geochemistry in drill-cores from the Triassic Stuttgart Formation (Schilfsandstein) recovered from the monitoring well at the CO2 test injection site near Ketzin, Germany. The reservoir rock is a porous, poorly to moderately cohesive fluvial sandstone containing up to 2–4 wt% reactive Fe. Based on a sequential extraction, most Fe falls into the dithionite-extractable Fe-fraction and Fe bound to sheet silicates, whereby some Fe in the dithionite-extractable Fe-fraction may have been leached from illite and smectite. Illite and smectite were detected in core samples by X-ray diffraction and confirmed as the main Fe-containing mineral phases by X-ray absorption spectroscopy. Chlorite is also present, but likely does not contribute much to the high amount of Fe in the silicate-bound fraction. The organic carbon content of the reservoir rock is extremely low (<0.3 wt%), thus likely limiting microbial Fe-reduction or sulphate reduction despite relatively high concentrations of reactive Fe-mineral phases in the reservoir rock and sulphate in the reservoir fluid. Both processes could, however, be fuelled by organic matter that is mobilized by the flow of supercritical CO2 or introduced with the drilling fluid. Over long time periods, a potential way of liberating additional reactive Fe could occur through weathering of silicates due to acidification by CO2

    Quantifying bioirrigation using ecological parameters: a stochastic approach†

    Get PDF
    Irrigation by benthic macrofauna has a major influence on the biogeochemistry and microbial community structure of sediments. Existing quantitative models of bioirrigation rely primarily on chemical, rather than ecological, information and the depth-dependence of bioirrigation intensity is either imposed or constrained through a data fitting procedure. In this study, stochastic simulations of 3D burrow networks are used to calculate mean densities, volumes and wall surface areas of burrows, as well as their variabilities, as a function of sediment depth. Burrow networks of the following model organisms are considered: the polychaete worms Nereis diversicolor and Schizocardium sp., the shrimp Callianassa subterranea, the echiuran worm Maxmuelleria lankesteri, the fiddler crabs Uca minax, U. pugnax and U. pugilator, and the mud crabs Sesarma reticulatum and Eurytium limosum. Consortia of these model organisms are then used to predict burrow networks in a shallow water carbonate sediment at Dry Tortugas, FL, and in two intertidal saltmarsh sites at Sapelo Island, GA. Solute-specific nonlocal bioirrigation coefficients are calculated from the depth-dependent burrow surface areas and the radial diffusive length scale around the burrows. Bioirrigation coefficients for sulfate obtained from network simulations, with the diffusive length scales constrained by sulfate reduction rate profiles, agree with independent estimates of bioirrigation coefficients based on pore water chemistry. Bioirrigation coefficients for O(2 )derived from the stochastic model, with the diffusion length scales constrained by O(2 )microprofiles measured at the sediment/water interface, are larger than irrigation coefficients based on vertical pore water chemical profiles. This reflects, in part, the rapid attenuation with depth of the O(2 )concentration within the burrows, which reduces the driving force for chemical transfer across the burrow walls. Correction for the depletion of O(2 )in the burrows results in closer agreement between stochastically-derived and chemically-derived irrigation coefficient profiles
    corecore