135 research outputs found

    Statistical modelling of masked gene regulatory pathway changes across microarray studies of interferon gamma activated macrophages

    Get PDF
    Interferon gamma (IFN-γ) regulation of macrophages plays an essential role in innate immunity and pathogenicity of viral infections by directing large and small genome-wide changes in the transcriptional program of macrophages. Smaller changes at the transcriptional level are difficult to detect but can have profound biological effects, motivating the hypothesis of this thesis that responses of macrophages to immune activation by IFN-γ include small quantitative changes that are masked by noise but represent meaningful transcriptional systems in pathways against infection. To test this hypothesis, statistical meta-analysis of microarray studies is investigated as a tool to obtain the necessary increase in analysis sensitivity. Three meta-analysis models (Effect size model, Rank Product model, Fisher’s sum of logs) and three further modified versions were applied to a heterogeneous set of four microarray studies on the effect of IFN-γ on murine macrophages. Performance assessments include recovery of known biology and are followed by development of novel biological hypotheses through secondary analysis of meta-analysis outcomes in context of independent biological data sources. A separate network analysis of a microarray time course study investigate s if gene sets with coordinated time-dependent relationships overlap can also identify subtle IFN-γ related transcriptional changes in macrophages that match those identified through meta-analysis. It was found that all meta-analysis models can identify biologically meaningful transcription at enhanced sensitivity levels, with slightly improved performance advantages for a non-parametric model (Rank Product meta-analysis). Meta-analysis yielded consistently regulated genes, hidden in individual microarray studies, related to sterol biosynthesis (Stard3, Pgrmc1, Galnt6, Rab11a, Golga4, Lrp10), implicated in cross-talk between type II and type I interferon or IL-10 signalling (Tbk1, Ikbke, Clic4, Ptpre, Batf), and circadian rhythm (Csnk1e). Further network analysis confirms that meta-analysis findings are highly concentrated in a distinct immune response cluster of co-expressed genes, and also identifies global expression modularisation in IFN-γ treated macrophages, pointing to Trafd1 as a central anti-correlated node topologically linked to interactions with down-regulated sterol biosynthesis pathway members. Outcomes from this thesis suggest that small transcriptional changes in IFN-γ activated macrophages can be detected by enhancing sensitivity through combination of multiple microarray studies. Together with use of bioinformatical resources, independent data sets and network analysis, further validation assigns a potential role for low or variable transcription genes in linking type II interferon signalling to type I and TLR signalling, as well as the sterol metabolic network

    Rapid proteasomal elimination of 3-hydroxy-3-methylglutaryl-CoA reductase by interferon-Îł in primary macrophages requires endogenous 25-hydroxycholesterol synthesis (in press)

    Get PDF
    AbstractInterferons (IFNs) play a central role in immunity and emerging evidence suggests that IFN-signalling coordinately regulates sterol biosynthesis in macrophages, via Sterol Regulatory Element-Binding Protein (SREBP) dependent and independent pathways. However, the precise mechanisms and kinetic steps by which IFN controls sterol biosynthesis are as yet not fully understood. Here, we elucidate the molecular circuitry governing how IFN controls the first regulated step in the mevalonate-sterol pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), through the synthesis of 25-Hydroxycholesterol (25-HC) from cholesterol by the IFN-inducible Cholesterol-25-Hydroxylase (CH25H). We show for the first 30-min of IFN stimulation of macrophages the rate of de novo synthesis of the Ch25h transcript is markedly increased but by 120-min becomes transcriptionally curtailed, coincident with induction of the Activating Transcription Factor 3 (ATF3) repressor. We demonstrate ATF3 induction by Toll-like receptors is strictly dependent on IFN-signalling. While the SREBP-pathway dependent rates of de novo transcription of Hmgcr are relatively unchanged in the first 90-min of IFN treatment, we find HMGCR enzyme levels undergo a rapid proteasomal-mediated degradation, defining a previously unappreciated SREBP-independent mechanism for IFN-action. These events precede a sustained marked reduction in Hmgcr RNA levels involving SREBP-dependent mechanisms. We demonstrate that HMGCR proteasomal-degradation by IFN strictly requires the synthesis of endogenous 25-HC and functionally couples HMGCR to CH25H to coordinately suppress sterol biosynthesis. In conclusion, we quantitatively delineate proteomic and transcriptional levels of IFN-mediated control of HMGCR, the primary enzymatic step of the mevalonate-sterol biosynthesis pathway, providing a foundational framework for mathematically modelling the therapeutic outcome of immune-metabolic pathways

    Testing ecological theories with sequence similarity networks: marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms

    Get PDF
    International audienceBackground : High-throughput sequencing technologies are lifting major limitations to molecular-based ecological studies of eukaryotic microbial diversity, but analyses of the resulting millions of short sequences remain a major bottleneck for these approaches. Here, we introduce the analytical and statistical framework of sequence similarity networks, increasingly used in evolutionary studies and graph theory, into the field of ecology to analyze novel pyrosequenced V4 small subunit rDNA (SSU-rDNA) sequence data sets in the context of previous studies, including SSU-rDNA Sanger sequence data from cultured ciliates and from previous environmental diversity inventories.Results : Our broadly applicable protocol quantified the progress in the description of genetic diversity of ciliates by environmental SSU-rDNA surveys, detected a fundamental historical bias in the tendency to recover already known groups in these surveys, and revealed substantial amounts of hidden microbial diversity. Moreover, network measures demonstrated that ciliates are not globally dispersed, but are structured by habitat and geographical location at intermediate geographical scale, as observed for bacteria, plants, and animals.Conclusions : Currently available ‘universal’ primers used for local in-depth sequencing surveys provide little hope to exhaust the significantly higher ciliate (and most likely microbial) diversity than previously thought. Network analyses such as presented in this study offer a promising way to guide the design of novel primers and to further explore this vast and structured microbial diversity

    Global Trends of Benthic Bacterial Diversity and Community Composition Along Organic Enrichment Gradients of Salmon Farms

    Get PDF
    The analysis of benthic bacterial community structure has emerged as a powerful alternative to traditional microscopy-based taxonomic approaches to monitor aquaculture disturbance in coastal environments. However, local bacterial diversity and community composition vary with season, biogeographic region, hydrology, sediment texture, and aquafarm-specific parameters. Therefore, without an understanding of the inherent variation contained within community complexes, bacterial diversity surveys conducted at individual farms, countries, or specific seasons may not be able to infer global universal pictures of bacterial community diversity and composition at different degrees of aquaculture disturbance. We have analyzed environmental DNA (eDNA) metabarcodes (V3–V4 region of the hypervariable SSU rRNA gene) of 138 samples of different farms located in different major salmon-producing countries. For these samples, we identified universal bacterial core taxa that indicate high, moderate, and low aquaculture impact, regardless of sampling season, sampled country, seafloor substrate type, or local farming and environmental conditions. We also discuss bacterial taxon groups that are specific for individual local conditions. We then link the metabolic properties of the identified bacterial taxon groups to benthic processes, which provides a better understanding of universal benthic ecosystem function(ing) of coastal aquaculture sites. Our results may further guide the continuing development of a practical and generic bacterial eDNA-based environmental monitoring approach.publishedVersio

    Seasonality of Planktonic Freshwater Ciliates: Are Analyses Based on V9 Regions of the 18S rRNA Gene Correlated With Morphospecies Counts?

    Get PDF
    Ciliates represent central nodes in freshwater planktonic food webs, and many species show pronounced seasonality, with short-lived maxima of a few dominant taxa while many being rare or ephemeral. These observations are primarily based on morphospecies counting methods, which, however, have limitations concerning the amount and volume of samples that can be processed. For high sampling frequencies at large scales, high throughput sequencing (HTS) of freshwater ciliates seems to be a promising tool. However, several studies reported large discrepancy between species abundance determinations by molecular compared to morphological means. Therefore, we compared ciliate DNA metabarcodes (V9 regions of the 18S rRNA gene) with morphospecies counts for a 3-year study (Lake Zurich, Switzerland; biweekly sampling, n = 74). In addition, we isolated, cultivated and sequenced the 18S rRNA gene of twelve selected ciliate species that served as seeds for HTS analyses. This workflow allowed for a detailed comparison of V9 data with microscopic analyses by quantitative protargol staining (QPS). The dynamics of V9 read abundances over the seasonal cycle corroborated well with morphospecies population patterns. Annual successions of rare and ephemeral species were more adequately characterized by V9 reads than by QPS. However, numbers of species specific sequence reads only partly reflected rank orders seen by counts. In contrast, biomass-based assemblage compositions showed higher similarity to V9 read numbers, probably indicating a relation between cell sizes and numbers / sizes of macronuclei (or 18S rRNA operons). Full-length 18S rRNA sequences of ciliates assigned to certain morphospecies are urgently needed for barcoding approaches as planktonic taxa are still poorly represented in public databases and the interpretation of HTS data depends on profound reference sequences. Through linking operational taxonomic units (OTUs) with known morphospecies, we can use the deep knowledge about the autecology of these species
    • 

    corecore