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ABSTRACT
The statistical language R and Bioconductor package are
favoured by many biostatisticians for processing microarray
data. The amount of data produced by these analyses has
reached the limits of many common bioinformatics comput-
ing infrastructures. High Performance Computing (HPC)
systems offer a solution to this issue. The Simple Parallel R
INTerface (SPRINT) is a package that provides biostatisti-
cians with easy access to HPC systems and allows the addi-
tion of parallelized functions to R. This paper will present
how we added a parallelized permutation testing function
in R using SPRINT and how this function performs on a
supercomputer for executions of up to 512 processes.

Categories and Subject Descriptors
D.1.3 [Software]: Programming techniques—Parallel pro-

gramming ; G.4 [Mathematics and Computing]: Mathe-
matical Software—Parallel and vector implementations

General Terms
Algorithms, Performance, Experimentation

Keywords
HPC, MPI, Permutation, Microarray

1. INTRODUCTION
Analyses of post genomic data are requiring increasingly
large amounts of computational processing power and mem-
ory to complete. A popular free statistical software package
for carrying out this data analysis is R [1]. At the Univer-
sity of Edinburgh, EPCC along with the Division of Pathway
Medicine (DPM), designed and built a prototype package for
R, called SPRINT [2], which parallelized a key statistical
correlation function of important use to genomic analysis.
This prototype successfully demonstrated that parallelized
statistical functions could be interfaced with R, providing
biologists with an easy route into HPC.

The aim of SPRINT is to require minimal HPC knowledge,
minimal changes to existing R scripts, and yet give max-
imum performance. The package provides an interface to
HPC and a library of parallel functions. This paper focuses
on the work undertaken to extend the library through the
addition of a parallel permutation testing function.

The SPRINT project [3] carried out a user requirements sur-
vey [4] to collect information from the bioinformatics com-
munity on which R functions are causing bottlenecks when
processing genomic data as well as those that are currently
intractable on standard desktop machines. Some of these
functions are suited to large-scale distributed-memory ma-
chines and this paper is focused on implementing one of these
functions. In the SPRINT user requirements survey, respon-
dents were asked to list the five R functions they would
consider most useful for inclusion in a parallel R function li-
brary. The mt.maxT function [5] from the multtest package
[6] was the 4th most requested function.



1.1 Other parallel implementations
The R package, as it is currently being released, has no built-
in parallel features. A few open source groups from the R
community developed various packages [7, 8, 9, 10, 11] in
an effort to enable R to run in parallel. These packages can
execute simple parallel functions with no data dependen-
cies. The primary objective of SPRINT is to contribute to
this effort by adding functionality beyond the limits of the
available parallel packages.

The existing packages offer tools for applying various forms
of parallelism in R codes. However, many R functions, like
mt.maxT, are implemented in the C language with only their
interface implemented in R. The most commonly used ap-
proach in these cases is to perform multiple executions on
subsets of the dataset, the iteration count, or both. By doing
so the memory demand and the run time of each individual
execution are reduced to a reasonable level. Although this
workaround can be applied in many cases, the partial data
produced have to be reduced and processed in order to be
transformed into the expected output.

In SPRINT the functions are implemented at C level and ex-
ecute in parallel with minimal changes to the R code. The
results are reduced and transformed to the expected out-
put before they are returned to the user, thus requiring no
further processing. In addition, processes can communicate
and exchange data, which enables data to have dependen-
cies.

2. THE PERMUTATION FUNCTION
2.1 The serial version: mt.maxT
In statistical analysis, a permutation test is one of the meth-
ods used for computing the statistical significance of data.
This value is a measure of how likely it is to obtain data
with the same properties as the one being tested, should the
experiment be performed again. This value is known as the
p-value. The R mt.maxT function computes the adjusted p-
values for step-down multiple testing procedures [5], as they
are described in Westfall and Young [12].

The function supports two types of permutation generators.
A random permutations generator and a complete permuta-
tions generator. Moreover, the function supports six differ-
ent methods for statistics, used for testing the null hypoth-
esis of no-association between the class labels and the vari-
ables. For all the methods both generators are implemented.
Furthermore, for all combinations of method/generator the
user can either choose to save the permutations in memory
before the computations take place or compute them on the
fly. Considering all these options, there are 24 possible com-
binations of generator/method/store. Four of the statistics
methods are similar in nature and use the same implementa-
tion of generators. Figure 1 shows how many combinations
are implemented in R.

The six supported statistic methods are the following:

• t: Tests based on a two-sample Welch t-statistics (un-
equal variances).

• t.equalvar: Tests based on two-sample t-statistics
with equal variance for the two samples.
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Figure 1: The mt.maxT generator/method/store
combinations.
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Figure 2: How permutations are distributed among
the available processes.

• Wilcoxon: Tests based on standardized rank sum
Wilcoxon statistics.

• f : Tests based on f-statistics.

• Pair-t: Tests based on paired t-statistics.

• Block-f : Tests based on f-statistics which adjust for
block differences.

For complete permutations the code never stores the per-
mutations in memory (combinations 2, 6, 10 in Figure 1).
Although the option is available, it is implemented using the
on-the-fly generator of permutations. For the Block-f statis-
tics method the permutations are never stored in memory
due to the huge amount of permutations produced. The op-
tion is available but the code is again implemented using the
on-the-fly generator. The distinct combinations the code is
implementing are therefore eight (combinations 1, 3, 4, 5, 7,
8, 11 and 12, in Figure 1).

2.2 The parallel version: pmaxT
The parallelism is introduced by dividing the permutation
count into equal chunks and assigning them to the available
processes. At the end of the computational kernel each pro-
cess will have gathered a part of the observations needed to
compute the raw and adjusted p-values. These observations
are gathered on the master process where the p-values are
computed and returned to R.

To be able to reproduce the same results as the serial ver-
sion, the permutations performed by each process need to be
selected with caution. Figure 2 shows how the permutations
are distributed among the available processes. The first per-
mutation depends on the initial labelling of the columns and
it is thus special. This permutation only needs to be taken
into account once by the master process. The remaining
processes skip the first generator permutation (from both
the complete and random generators). Moreover, the gen-
erators need to be forwarded to the appropriate permuta-
tion. To deal with this the interface of the generators was
altered and an additional variable is passed to the initial-
ization function. Depending on the value of this variable,
the generators waste a number of cycles and forward to the
appropriate permutation.

The parallel implementation executes the following steps:

• Step 1: The master process executes a pre-processing
step to check the input parameters and also transform
a few to another format.

• Step 2: All processes, apart from the master process,
allocate memory to accept the input parameters. The
master process needs to broadcast the lengths of the
string parameters first. All the scalar integer options
are also broadcast for convenience. These values are
received in a statically allocated buffer vector (this is
necessary to ensure they can be received). All dy-
namically allocated memory needed is then allocated,
initialised and checked.

• Step 3: A global sum is performed to synchronize
all processes and ensure that the necessary memory is
allocated. This memory includes the input parameters,
the input data and also the memory to store the final
results.

• Step 4: Each process computes how many permuta-
tions it needs to execute and also initializes its genera-
tor to the appropriate permutation. Then it computes
the local observations.

• Step 5: The master process gathers the partial obser-
vations and computes the raw and adjusted p-values.
The computed values are saved in a memory space allo-
cated by the pre-processing script at the R level. This
is necessary in order for the values to be returned back
to R when the computations are finished.

• Step 6: All processes free their dynamically allocated
memory.

The interface of the pmaxT is identical to the interface of
mt.maxT. All functionality was sucessfully ported to the par-
allel version:

pmaxT(X, classlabel, test = "t",

side = "abs", fixed.seed.sampling = "y",

B = 10000, na = .mt.naNUM, nonpara = "n")

Compared to:

mt.maxT(X, classlabel, test = "t",

side = "abs", fixed.seed.sampling = "y",

B = 10000, na = .mt.naNUM, nonpara = "n")

Parameters test, side, fixed.seed.sampling, B, na and
nonpara are optional. If omitted, the default values shown
above are used. The description of the input parameters
follows.

• X : The input dataset array.

• classlabel : The class labels of the columns of the
input dataset.



Table 1: Profile of pmaxT implementation.
Process Pre-processing Broadcast Create data Computational p-values Speedup Speedup

count parameters kernel computations (computations)
1 0.260 0.001 0.010 795.600 0.002 1.00 1.00
2 0.261 0.004 0.012 406.204 0.884 1.95 1.95
4 0.259 0.009 0.013 207.776 0.005 3.82 3.82
8 0.260 0.013 0.013 104.169 0.489 7.58 7.63

16 0.259 0.015 0.013 51.931 0.713 15.03 15.32
32 0.259 0.017 0.013 25.993 0.784 29.40 30.60
64 0.259 0.020 0.013 13.028 0.611 57.11 61.06

128 0.259 0.023 0.013 6.516 0.662 106.48 122.09
256 0.260 0.024 0.013 3.257 0.611 190.99 244.27
512 0.260 0.028 0.013 1.633 0.606 313.09 487.20

• test : The method for statistics, used for testing the
null hypothesis.

• side : The type of rejection region. Available options
are abs for absolute difference, upper for the maximum
and lower for the minimum.

• fixed.seed.sampling : The choice between comput-
ing the permutations on the fly or save all permuta-
tions in memory prior to computations. Available op-
tions are y (yes) for the on the fly generator and n (no)
for storing them in memory.

• B : The number of permutations. When this value
is set to 0, the code will try to perform the complete
permutations of the data. In case the complete per-
mutations exceed the maximum allowed limit the user
is asked to explicitly request a smaller number of per-
mutations.

• na : The code for missing values. All missing values
will be excluded from the computations.

• nonpara : The option for non-parametric test statis-
tics. Available options are y for yes and n for no.

3. BENCHMARK RESULTS
3.1 HECToR
The parallel functions were tested and benchmarked on the
UK National Supercomputing service, the HECToR Cray
XT system [13]. At that point the system comprised 1416
compute blades, each with four quad core processor sockets.
The CPUs are AMD 2.3 GHz Opteron chips with 8 GB of
memory. This gives a total of 22,656 active cores with a total
of 45.3 TB of memory and a theoretical peak performance
of 208 TFLOPS.

3.2 Benchmarks for pmaxT
The benchmarks were executed for process counts 1 to 512.
The values reported are the minimum measured timings ob-
tained from 5 executions.

The performance and scaling benchmarks for pmaxT exe-
cute a permutation count of 150,000 on a dataset of 6,102
rows (genes) and 76 columns (samples). Table 1 shows the
time spent on each of the five main sections of the code. Fig-
ure 3 shows a graphical representation of the scaling. Figure
4 shows how the speedup of the current parallel version com-
pares to the optimal speedup.
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Table 2: Processing time of pmaxT for various input datasets and permutation counts.
Input array Permutation Total runtime Serial runtime

dimension and size count (in seconds) (approximation)
(genes × samples) (in seconds)

36, 612 × 76 500, 000 73.18 20,750
21.22MB (6 hours)

36, 612 × 76 1, 000, 000 146.64 41,500
21.22MB (12 hours)

36, 612 × 76 2, 000, 000 290.22 83,000
21.22MB (23 hours)

73, 224 × 76 500, 000 148.46 35,000
42.45MB (10 hours)

73, 224 × 76 1, 000, 000 294.61 70,000
42.45MB (20 hours)

73, 224 × 76 2, 000, 000 591.48 140,000
42.45MB (39 hours)

In addition, benchmarks were executed to measure the
amount of time the new parallel implementation needs to ex-
ecute a very high permutation count. Table 2 shows the run
time of different input datasets and permutations counts.
All executions were performed with 256 processes.

The run times for the serial implementation in Table 2 are
not actual measured timings but an approximation of the
real run time. Executions with lower permutation counts
(1000, 2000 and 3000 permutations) showed a linear increase
in run time as the permutation count increases. According
to these results the approximated run times were calculated.

4. DISCUSSION
The results from the benchmarks show a very good scaling
behavior. As the number of processes increases, the amount
of time needed by the function reduces linearly. However, for
very large process counts, the overhead from broadcasting
and transforming the input dataset may consume a signifi-
cant percentage of the total run time and affect the overall
scaling (see last two columns of Table 1).

Examining the scaling of the computational kernel alone, it
can be seen how well the implementation performs as the
process count increases. When the work load of the com-
putations is sufficiently high, the amount of time spent to
broadcast and transform the data will be small enough to
not affect the overall scaling.

The main barrier for the permutation testing function is
the permutation count. As the count of requested permuta-
tions increases, the run time becomes excessively costly. The
parallel implementation distributes the permutations among
the available processes and makes it possible to perform high
permutation counts in reasonable run times. When the per-
mutations are generated on the fly, the implementation de-
mands no extra memory in order to perform a higher per-
mutation count. As long as the input dataset can be stored
in memory, the implementation can execute a count that is
limited only by the precision of the underlying CPU archi-
tecture.

Furthermore, the faster execution times of the parallel im-
plementation help with reducing the risk of failures. Long
executions have higher risks due to system failures, thus
an implementation that performs the same amount of work
faster is beneficial.

5. CONCLUSIONS
This paper presents how an R permutation testing function
was parallelized for inclusion to the SPRINT package. The
scaling of the parallel implementation was tested and the
results showed a close to optimal scaling. In addition, the
function is able to perform a much higher permutation count
within a reasonable run limit.

The success of the parallelization process verifies that
SPRINT can be effectively used in order to add parallelized
functions to the R statistical language with minimal impact
on the user interface.

5.1 Future work
Taking into consideration the information gathered by the
user requirements survey [4], more functions can be paral-
lelized and added to the SPRINT package. Along with the
new functionality the interface of SPRINT can be extended
in order to enable developers and scientists to add their own
parallel functions with less effort.

Although the parallel implementation of the permutation
testing function performs well, a few additional changes can
be made. These changes are:

1. The current implementation performs an array trans-
position on the input dataset. For this transformation
a new array is allocated. Algorithms for in-place non-
square array transposition exist that are able to per-
form this step without the need of additional memory.

2. The string input parameters can be replaced with
scalar integer values before are broadcast to all pro-
cesses. Scalar parameters are easier and faster to
broadcast and handle.
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