218 research outputs found

    SAFEGUARDS AND NONPROLIFERATION CONSIDERATIONS RELEVANT TO FUELS REFABRICATION AND DEVELOPMENT PROGRAM

    Full text link
    Early in the Fuels Refabrication and Development (FRAD) program, it was recognized that safeguards and nonproliferation design criteria were needed to provide guidance to equipment, process, and facility designers. This need was highlighted by the recent attention given safeguards and proliferation. Because of this heightened concern, it was found that design criteria that adequately address safeguards and nonproliferation do not now exist. For this reason, a three-day workshop was convened to attempt to collect and organize existing information regarding design criteria. This document is a result of that undertaking and the subsequent efforts required to structure the information. In summary, it was found that domestic and international goals and objectives are reasonably well established. Goals and objectives for evaluating the proliferation resistance of a facility are less firmly defined. A listing of design criteria for domestic and international safeguards has not been compiled. This document presents a summary of considerations that must be incorporated into design criteria but stops short of developing a comprehensive list of design criteria. One is certainly needed and should be funded as a follow-on effort. Following the development of the design criteria, the next logical steps are the development of evaluation methodologies and acceptance criteria. These also were proposed as logical follow-on activities which would be needed before a major FRAD design activity could be initiated

    The psychological science accelerator's COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    The psychological science accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data.info:eu-repo/semantics/publishedVersio

    The Role of Actin Turnover in Retrograde Actin Network Flow in Neuronal Growth Cones

    Get PDF
    The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network

    A Multi-Lab Test of the Facial Feedback Hypothesis by the Many Smiles Collaboration

    Get PDF
    Following theories of emotional embodiment, the facial feedback hypothesis suggests that individuals’ subjective experiences of emotion are influenced by their facial expressions. However, evidence for this hypothesis has been mixed. We thus formed a global adversarial collaboration and carried out a preregistered, multicentre study designed to specify and test the conditions that should most reliably produce facial feedback effects. Data from n = 3,878 participants spanning 19 countries indicated that a facial mimicry and voluntary facial action task could both amplify and initiate feelings of happiness. However, evidence of facial feedback effects was less conclusive when facial feedback was manipulated unobtrusively via a pen-in-mouth task

    A multi-lab test of the facial feedback hypothesis by the Many Smiles Collaboration

    Get PDF
    Following theories of emotional embodiment, the facial feedback hypothesis suggests that individuals' subjective experiences of emotion are influenced by their facial expressions. However, evidence for this hypothesis has been mixed. We thus formed a global adversarial collaboration and carried out a preregistered, multicentre study designed to specify and test the conditions that should most reliably produce facial feedback effects. Data from n = 3,878 participants spanning 19 countries indicated that a facial mimicry and voluntary facial action task could both amplify and initiate feelings of happiness. However, evidence of facial feedback effects was less conclusive when facial feedback was manipulated unobtrusively via a pen-in-mouth task

    Alteration of the Cortical Actin Cytoskeleton Deregulates Ca2+ Signaling, Monospermic Fertilization, and Sperm Entry

    Get PDF
    Background: When preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca 2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear. Methodology/Principal Findings: We have measured changes in intracellular Ca 2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP3 receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton. Conclusions/Significance: Our findings identify important roles for subplasmalemmal actin fibers in the process of spermegg interaction and in the subsequent events related to fertilization: the generation of Ca 2+ signals, sperm penetration

    Effects of Ionomycin on Egg Activation and Early Development in Starfish

    Get PDF
    Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation

    Periodic actin structures in neuronal axons are required to maintain microtubules

    Get PDF
    Axons are the cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly-spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily-conserved, ubiquitous, highly-ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organisation and function, combining versatile Drosophila genetics with super-resolution microscopy and various functional readouts. Analyses with 11 different actin regulators and 3 actin-targeting drugs suggest PMS to contain short actin filaments which are depolymerisation resistant and sensitive to spectrin, adducin and nucleator deficiency - consistent with microscopy-derived models proposing PMS as specialised cortical actin. Upon actin removal we observed gaps in microtubule bundles, reduced microtubule polymerisation and reduced axon numbers suggesting a role of PMS in microtubule organisation. These effects become strongly enhanced when carried out in neurons lacking the microtubule-stabilising protein Short stop (Shot). Combining the aforementioned actin manipulations with Shot deficiency revealed a close correlation between PMS abundance and microtubule regulation, consistent with a model in which PMS-dependent microtubule polymerisation contributes to their maintenance in axons. We discuss potential implications of this novel PMS function along axon shafts for axon maintenance and regeneration
    • …
    corecore