52 research outputs found

    The permeability and selectivity of nanocomposite membrane of PEBAx 1657/PEI/SiO2 for separation of CO2, N2, O2, CH4 gases: A data set

    Get PDF
    The poly ether-block-amide (PEBAx)/Poly-ether-imide (PEI)/SiO2 nanocomposite membranes were fabricated using the solution casting method and utilized for separation of N2, O2, CH4, and CO2 gases. The effect of SiO2 nanoparticles loading on permeability and selectivity of gases using the nanocomposite membranes was tested. The data showed that the permeability of the gases increased with increasing SiO2 nanoparticle content. dBy adding SiO2 nanoparticles (10 wt%), the permeability of N2, O2, CH4, and CO2 gases elevated from 0.39, 1, 1.83 and 11.1 to 2.01, 1.95, 2.98 and 19.83 Barrer unit, respectively (at a pressure of 2 Bar). In contrast, with increasing SiO2 content the selectivity of the studied gases decreased. The morphology, crystallinity and the functional groups of the fabricated membranes were evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) techniques. The data presented confirm the influence of the nanoparticles on the membrane structure and thus on the permeability and selectivity of the membranes

    Summarising the retinal vascular calibres in healthy, diabetic and diabetic retinopathy eyes

    Get PDF
    Retinal vessel calibre has been found to be an important biomarker of several retinal diseases, including diabetic retinopathy (DR). Quantifying the retinal vessel calibres is an important step for estimating the central retinal artery and vein equivalents. In this study, an alternative method to the already estab- lished branching coefficient(BC) is proposed for summarising the vessel calibres in retinal junctions. This new method combines the mean diameter ratio with an alternative to Murray’s cube law exponent, derived by the fractal dimen- sion,experimentally, and the branch exponent of cerebral vessels, as has been suggested in previous studies with blood flow modelling. For the above calcu- lations, retinal images from healthy, diabetic and DR subjects were used. In addition, the above method was compared with the BC and was also applied to the evaluation of arteriovenous ratio as a biomarker of progression from diabetes to DR in four consecutive years, i.e. three/two/one years before the onset of DR and the first year of DR. Moreover, the retinal arteries and veins around the optic nerve head were also evaluated. The new approach quantifies the vessels more accurately. The decrease in terms of the mean absolute percentage error was between 0.24% and 0.49%, extending at the same time the quantification beyond healthy subjects

    Self-organization of developing embryo using scale-invariant approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos.</p> <p>Methods</p> <p>In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing <it>C. elegans </it>during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method.</p> <p>Results and conclusion</p> <p>The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2.</p

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Fractal geometry concepts applied to the morphology of crop plants

    No full text
    The above-ground part of a plant has an important contribution to plant development and yield production. Physiological activities of a plant canopy highly correlate to morphology of plant vegetation. Obviously, leaf area index is a good indicator for leaf area, but does not provide any information about the spatial architecture of plant canopy. With the development of fractal theory, a quantitative toot is now available for the investigation of complex objects and shapes such as plant structure. Vegetation structure of corn ( Zea mays L.) and soybean (Glycine max. (L.) Merr.] plants might be affected by the plant population density (low, normal, high) of each crop and corn-soybean intercropping. Skeletonized leaf-off images provided acceptable information to estimate the fractal dimension of the soybean plant 2-dimensionally, using the box-counting method. Fractal dimension varied among soybean treatments, with rankings: low > normal > intercrop > high, in the overall mean and normal &ap; intercrop &ap; low > high, in the slope of time plots. An adjustment of field corn plants to treatments, by changing the orientation of the plane of developed leaves with respect to the row, was observed. Thus, the fractal dimension of corn plant skeletal images from each of two sides, side I (parallel to row) and side 2 (perpendicular to row), was analyzed. On the basis of overall means of fractal dimension, treatments were ranked as: high > normal &ap; intercrop &ap; low for side 1 and intercrop > low &ap; normal > high for side 2. In both cases of soybean and corn plants, leaf area index, plant height and number of leaves (only in case of soybean plant) increased over the experiment for all the treatments, indicating a positive correlation with fractal dimension. In contrast, light penetration decreased during crop development, indicating a negative correlation with fractal dimension. Furthermore, a modified version of the Beer-Lambert equation, in which fractal dimension m

    Aspects of barley post-anthesis nitrogen physiology

    No full text
    The protein concentration of cereal grains is low and the production of cereal crops with increased grain protein concentrations is desirable. This work investigates the physiological aspects of protein accumulation potential in barley grain. A recently developed perfusion system was used in four experiments conducted in 1993 and 1994. In the field experiment, plants were allowed to take up urea at 15 or 30 mM N, or ethephon at 15 mu mu M. Abscisic acid and 2,4-D decreased total seed weight spikesp1 sp{-1}. Gibberellic acid and 2,4-D increased seed protein concentration and content, while ABA decreased both of these. Kinetin and abscisic acid treatments resulted in the highest and lowest levels, respectively for flag leaf photosynthesis, stomatal conductance, transpiration and intercellular COsb2 sb2 concentration. Both protein content spikesp1 sp{-1} and seed protein concentration were elevated in plants fertilized with 10.7 mM N via the soil and plants perfused with 30 mM N via the peduncle. Plants receiving treatments of 10.7 mM N from the soil and mixture of 30 mM N and GAsb3 sb3 or 2,4-D through the peduncle had increased protein content seedsp1 sp{-1}, and the highest seed weight spikesp1 sp{-1}, respectively. Peduncle perfusion with 30 mM N increased spike protein concentration and content and grain protein concentration without affecting seed weight spikesp1 sp{-1}. Grain protein concentration was increased by peduncle perfusion with ethephon. The perfusion technique worked well under field conditions. (Abstract shortened by UMI.
    corecore