56 research outputs found

    Activation of phospholipase A2 by cannabinoids Lack of correlation with CNS effects

    Get PDF
    AbstractCannabinoids Δ1-tetrahydrocannabinol, cannabinol, cannabidiol and cannabigerol have been shown to affect directly the activity of phospholipase A2 in a cell-free assay. The compounds produced a biphasic activation of the enzyme, with EC50 values in the range 6.0–20.0 × 10−6 M and IC50 values in the range 50.0–150.0 × 10−6M. These results correlated well with the relative potencies reported for the stimulation of prostaglandin release from human synovial cells in vitro, confirming that activation of phospholipase A2 is the predominant action of cannabinoids on arachidonate metabolism in tissue culture. However, since Δ1-tetrahydrocannabinol is unique among these compounds in possessing cataleptic activity, it is unlikely that phospholipase A2 is the major receptor mediating the psychotropic effects of cannabis

    Whole organisms or pure compounds? entourage effect versus drug specificity

    Get PDF
    As the therapeutic use of sacred plants and fungi becomes increasingly accepted by Western medicine, a tug of war has been taking place between those who advocate the traditional consumption of whole organisms and those who defend exclusively the utilization of purified compounds. The attempt to reduce organisms to single active principles is challenged by the sheer complexity of traditional medicine. Ayahuasca, for example, is a concoction of at least two plant species containing multiple psychoactive substances with complex interactions. Similarly, cannabis contains dozens of psychoactive substances whose specific combinations in different strains correspond to different types of therapeutic and cognitive effects. The “entourage effect” refers to the synergistic effects of the multiple compounds present in whole organisms, which may potentiate clinical efficacy while attenuating side effects. In opposition to this view, mainstream pharmacology is adamant about the need to use purified substances, presumably more specific and safe. In this chapter, I will review the evidence on both sides to discuss the scientific, economic, and political implications of this controversy. The evidence indicates that it is time to embrace the therapeutic complexity of psychedelics.2019-07-3

    NMR assignments of the major Cannabinoids and cannabiflavonoids isolated from flowers of Cannabis sativa

    Full text link
    The complete H-1- and C-13-NMR assignments of the major Cannabis constituents, Delta(9)-tetrahydrocannabinol, tetrahydrocannabinolic acid, A-tetrahydrocannabinol, cannabigerol, cannabinol, cannabidiol, cannabidiolic acid, cannflavin A and cannflavin B have been determined on the basis of one- and two-dimensional NMR spectra including H-1- and (13)-NMR, H-1-H-1-COSY, HMQC and HMBC. The substitution of carboxylic acid on the cannabinoid nucleus (as in tetrahydrocannabinolic acid and cannabidiolic acid) has a large effect on the chemical shift of H-1" of the C5 side chain and 2'-OH. It was also observed that carboxylic acid substitution reduces intermolecular hydrogen bonding resulting in a sharpening of the H-5' signal in cannabinolic acid in deuterated chloroform. The additional aromaticity of cannabinol causes the two angular methyl groups (H-8 and H-9) to show identical H-1-NMR shifts, which indicates that the two aromatic rings are in one plane in contrast to the other cannabinoids. For the cannabiflavonoids, the unambiguous assignments of C-3' and C-4' of cannflavin A and B were determined by HMBC spectra. Copyright (C) 2004 John Wiley Sons, Ltd
    corecore