158 research outputs found
Feasibility of low energy radiative capture experiments at the LUNA underground accelerator facility
The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been
designed to study nuclear reactions of astrophysical interest. It is located
deep underground in the Gran Sasso National Laboratory, Italy. Two
electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination
with solid and gas target setups allowed to measure the total cross sections of
the radiative capture reactions H(p,)3He and
N(p,)O within their relevant Gamow peaks. We report on
the gamma background in the Gran Sasso laboratory measured by germanium and
bismuth germanate detectors, with and without an incident proton beam. A method
to localize the sources of beam induced background using the Doppler shift of
emitted gamma rays is presented. The feasibility of radiative capture studies
at energies of astrophysical interest is discussed for several experimental
scenarios.Comment: Submitted to Eur. Phys. J.
First measurement of the 14N(p,gamma)15O cross section down to 70 keV
In stars with temperatures above 20*10^6 K, hydrogen burning is dominated by
the CNO cycle. Its rate is determined by the slowest process, the
14N(p,gamma)15O reaction. Deep underground in Italy's Gran Sasso laboratory, at
the LUNA 400 kV accelerator, the cross section of this reaction has been
measured at energies much lower than ever achieved before. Using a windowless
gas target and a 4pi BGO summing detector, direct cross section data has been
obtained down to 70 keV, reaching a value of 0.24 picobarn. The Gamow peak has
been covered by experimental data for several scenarios of stable and explosive
hydrogen burning. In addition, the strength of the 259 keV resonance has been
remeasured. The thermonuclear reaction rate has been calculated for
temperatures 90 - 300 *10^6 K, for the first time with negligible impact from
extrapolations
Deep-underground search for the decay of 180m-Ta with an ultra-low-background HPGe detector
Ta is the longest-lived metastable state presently known. Its decay
has not been observed yet. In this work, we report a new result on the decay of
Ta obtained with a -g tantalum sample measured for d
with an ultra-low background HPGe detector in the STELLA laboratory of the
Laboratori Nazionali del Gran Sasso, in Italy. Before the measurement, the
sample has been stored deep-underground for ten years, resulting in subdominant
background contributions from cosmogenically activated Ta. We observe
no signal in the regions of interest and set half-life limits on the process
for the two channels EC and : yr and yr (% C. I.),
respectively. We also set the limit on the de-excitation / IC channel:
yr (% C. I.). These are, as of
now, the most stringent bounds on the decay of Ta worldwide.Comment: 8 pages, 7 figures, 4 table
The synergistic effect of chlorotoxin-mApoE in boosting drug-loaded liposomes across the BBB
We designed liposomes dually functionalized with ApoE-derived peptide (mApoE) and chlorotoxin (ClTx) to improve their blood-brain barrier (BBB) crossing. Our results demonstrated the synergistic activity of ClTx-mApoE in boosting doxorubicin-loaded liposomes across the BBB, keeping the anti-tumour activity of the drug loaded: mApoE acts promoting cellular uptake, while ClTx promotes exocytosis of liposomes
Impact of a revised Mg(p,)Al reaction rate on the operation of the Mg-Al cycle
Proton captures on Mg isotopes play an important role in the Mg-Al cycle
active in stellar H-burning regions. In particular, low-energy nuclear
resonances in the Mg(p,)Al reaction affect the production
of radioactive Al as well as the resulting Mg/Al abundance ratio.
Reliable estimations of these quantities require precise measurements of the
strengths of low-energy resonances. Based on a new experimental study performed
at LUNA, we provide revised rates of the Mg(p,)Al
and the Mg(p,)Al reactions with corresponding
uncertainties. In the temperature range 50 to 150 MK, the new recommended rate
of the Al production is up to 5 times higher than previously
assumed. In addition, at T MK, the revised total reaction rate is a
factor of 2 higher. Note that this is the range of temperature at which the
Mg-Al cycle operates in an H-burning zone. The effects of this revision are
discussed. Due to the significantly larger Mg(p,)Al
rate, the estimated production of Al in H-burning regions is less
efficient than previously obtained. As a result, the new rates should imply a
smaller contribution from Wolf-Rayet stars to the galactic Al budget.
Similarly, we show that the AGB extra-mixing scenario does not appear able to
explain the most extreme values of Al/Al, i.e. , found
in some O-rich presolar grains. Finally, the substantial increase of the total
reaction rate makes the hypothesis of a self-pollution by massive AGBs a more
robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster
stars
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a
major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted
by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis
calculations. The present work reports on a new precision experiment using the
activation technique at energies directly relevant to big-bang nucleosynthesis.
Previously such low energies had been reached experimentally only by the
prompt-gamma technique and with inferior precision. Using a windowless gas
target, high beam intensity and low background gamma-counting facilities, the
3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV
center-of-mass energy with a total uncertainty of 4%. The sources of systematic
uncertainty are discussed in detail. The present data can be used in big-bang
nucleosynthesis calculations and to constrain the extrapolation of the
3He(alpha,gamma)7Be astrophysical S-factor to solar energies
Comparison of the LUNA 3He(alpha,gamma)7Be activation results with earlier measurements and model calculations
Recently, the LUNA collaboration has carried out a high precision measurement
on the 3He(alpha,gamma)7Be reaction cross section with both activation and
on-line gamma-detection methods at unprecedented low energies. In this paper
the results obtained with the activation method are summarized. The results are
compared with previous activation experiments and the zero energy extrapolated
astrophysical S factor is determined using different theoretical models.Comment: Accepted for publication in Journal of Physics
The 3He(alpha,gamma)7Be S-factor at solar energies: the prompt gamma experiment at LUNA
The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang
nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement
of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran
Sasso underground laboratory by both the activation and the prompt gamma
detection methods. The present work reports full details of the prompt gamma
detection experiment, focusing on the determination of the systematic
uncertainty. The final data, including activation measurements at LUNA, are
compared with the results of the last generation experiments and two different
theoretical models are used to obtain the S-factor at solar energies.Comment: Accepted for publication in Nucl. Phys.
Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA
Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear
astrophysics are performed at the LUNA (Laboratory for Underground Nuclear
Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso
laboratory. By virtue of a specially constructed passive shield, the laboratory
gamma-ray background for E_\gamma < 3 MeV at LUNA has been reduced to levels
comparable to those experienced in dedicated offline underground gamma-counting
setups. The gamma-ray background induced by an incident alpha-beam has been
studied. The data are used to evaluate the feasibility of sensitive in-beam
experiments at LUNA and, by extension, at similar proposed facilities.Comment: accepted, Eur. Phys. J.
Measurement of 25Mg(p; gamma)26Al resonance strengths via gamma spectrometry
The COMPTEL instrument performed the first mapping of the 1.809 MeV photons
in the Galaxy, triggering considerable interest in determing the sources of
interstellar 26Al. The predicted 26Al is too low compared to the observation,
for a better understanding more accurate rates for the 25Mg(p; gamma)26Al
reaction are required. The 25Mg(p;gamma)26Al reaction has been investigated at
the resonances at Er= 745; 418; 374; 304 keV at Ruhr-Universitat-Bochum using a
Tandem accelerator and a 4piNaI detector. In addition the resonance at Er = 189
keV has been measured deep underground laboratory at Laboratori Nazionali del
Gran Sasso, exploiting the strong suppression of cosmic background. This low
resonance has been studied with the 400 kV LUNA accelerator and a HPGe
detector. The preliminary results of the resonance strengths will be reported.Comment: Accepted for publication in Journal of Physics
- …