103 research outputs found

    Leichte verformungsoptimierte Schalentragwerke aus mikrobewehrtem UHPC am Beispiel von Parabolrinnen solarthermischer Kraftwerke

    Get PDF
    Parabolrinnen-Kraftwerke sind zurzeit die am häufigsten zum Einsatz kommende und wirtschaftlichste Technologie solarthermisch konzentrierender Systeme (Concentrated Solar Power – CSP) und gehören zu den linienfokussierenden Systemen [1]. In Spanien stellen die solarthermischen Parabolrinnen-Kraftwerke Andasol 1–3 mit einer Kollektorfläche von ca. 150 Millionen m² bereits 150 MW zur Verfügung, mit denen ca. 200.000 Einwohner jährlich mit Strom versorgt werden können [2]–[4]. Das Solarfeld besteht aus ca. 150 m langen, in Reihe angeordneten Kollektoren, die aus einzelnen Parabolrinnen-Kollektormodulen zusammengefasst und im Tagesverlauf der Sonne nachgeführt werden. Die Lagerung erfolgt an den Modulrändern im Schwerpunkt des Kollektormoduls, der mit der Rotationsachse zusammenfällt. Bisher werden die Kollektoren überwiegend als filigranes Stahlfachwerk mit über die Aperturweite parabelförmig, uniaxial gekrümmten und punktuell gestützten Spiegelelementen ausgeführt. Bei der Assemblierung der Stahlfachwerke und der Spiegelelemente ist schon im Bauzustand durchgehend eine hohe Präzision gefordert, um eine maximale Solarstrahlenkonzentration der einfallenden direkten solaren Strahlung auf ein in der Fokallinie befindliches Absorberrohr sicherzustellen [5]. In diesem wird ein Wärmeträgermedium, zumeist Thermoöl, auf eine Prozesstemperatur von ca. 400 °C erhitzt. In einem nachgeschalteten konventionellen Kraftwerksblock wird mittels Dampfturbine Elektrizität erzeugt. Das bisher kommerziell meist genutzte Kollektormodul ist der EuroTrough mit einer Aperturweite von ca. 5,80 m und einer Modullänge von 12 m [6], [7] (Bild 1), welches als Benchmark für die erste Förderphase des Projekts diente. Zur Verbesserung der Wirtschaftlichkeit zielen bisherige Entwicklungen auf eine Vergrößerung der Spiegelfläche zur Steigerung des Wirkungsgrades über einen erhöhten geometrischen Konzentrationsgrad, definiert als das Verhältnis von Reflektor- zu Absorptionsfläche, ab. Module wie der UltimateTrough und der SpaceTube erreichen dies durch die Vergrößerung der Aperturweite auf 7,5 m bzw. 8 m [8], [9]. Ein alternatives Strukturkonzept aus stahlfaserverstärkten Betonfertigteilen der Schweizer Firma Airlight mit einer Aperturweite von 9,7 m besteht aus durch Luftdruck in parabolische Form gebrachten Spiegelfolien als Reflektorsystem und wurde bisher in einem Pilot-Kraftwerk in Ait-Baha, Marokko, umgesetzt [10]. Wesentliche Arbeiten der zweiten Förderphase sind daher – dem Trend zu größerer Apertur folgend – an der visionären Entwicklung von Parabolschalen mit Öffnungsweiten von bis zu 10 m ausgerichtet. [Aus: Einleitung]Parabolic trough power plants are currently the most frequently used and most economical technology of solar thermal systems (Concentrated Solar Power – CSP) and belong to the linear focus collector types [1]. In Spain, the solar thermal parabolic trough power plants Andasol 1–3 with a collector area of approx. 150 million m² already provide 150 MW, which means that approx. 200,000 inhabitants can be annually supplied with electricity [2]–[4]. The solar field consists of approx. 150 m long collectors arranged in rows, which are combined from individual parabolic trough collector modules and track the sun during the course of the day. The bearings are located at the edges of the module in the centre of gravity of the collector module, which corresponds to the axis of rotation. Up to now, the collectors have mainly been designed as a steel framework with parabolic, uniaxially curved and pointwise supported mirror elements. During the assembly of the steel framework and the mirror elements, high precision is required throughout the manufacturing in order to ensure a maximum solar radiation concentration of the incident direct solar radiation on an absorber tube located in the focal line [5]. A heat transfer medium, usually thermal oil, is heated to a process temperature of approx. 400 °C in the absorber tube. Electricity is generated in a downstream conventional power plant unit by means of a steam turbine. The most commercially used collector module is the EuroTrough with an aperture width of approx. 5.80 m and a module length of 12 m [6], [7] (Fig. 1), which served as a benchmark for the first funding phase of the project. In order to improve economic efficiency, previous developments have aimed to increase the size of the mirror surface in order to increase efficiency by a higher geometric degree of concentration, defined as the ratio of reflector surface to absorption surface. Modules like the UltimateTrough and the SpaceTube achieve this by increasing the aperture width to 7.5 m or 8 m, respectively, [8], [9]. An alternative structural concept consisting of prefabricated steel fibre-reinforced concrete elements from the Swiss company Airlight with an aperture width of 9.7 m consists of parabolic mirror foils as a reflector brought into parabolic shape by air pressure and has already been implemented in a pilot power plant in Ait-Baha, Morocco [10]. Therefore, in line with the trend towards a larger aperture, major work in the second funding phase aims at the visionary development of parabolic shells with aperture widths of up to 10 m. [Off: Introduction

    Automated Cardiac Resting Phase Detection Targeted on the Right Coronary Artery

    Full text link
    Static cardiac imaging such as late gadolinium enhancement, mapping, or 3-D coronary angiography require prior information, e.g., the phase during a cardiac cycle with least motion, called resting phase (RP). The purpose of this work is to propose a fully automated framework that allows the detection of the right coronary artery (RCA) RP within CINE series. The proposed prototype system consists of three main steps. First, the localization of the regions of interest (ROI) is performed. Second, the cropped ROI series are taken for tracking motions over all time points. Third, the output motion values are used to classify RPs. In this work, we focused on the detection of the area with the outer edge of the cross-section of the RCA as our target. The proposed framework was evaluated on 102 clinically acquired dataset at 1.5T and 3T. The automatically classified RPs were compared with the reference RPs annotated manually by a expert for testing the robustness and feasibility of the framework. The predicted RCA RPs showed high agreement with the experts annotated RPs with 92.7% accuracy, 90.5% sensitivity and 95.0% specificity for the unseen study dataset. The mean absolute difference of the start and end RP was 13.6 ±\pm 18.6 ms for the validation study dataset (n=102). In this work, automated RP detection has been introduced by the proposed framework and demonstrated feasibility, robustness, and applicability for static imaging acquisitions.Comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2023:00

    Ultra-High-Resolution Time-of-Flight MR-Angiography for the Noninvasive Assessment of Intracranial Aneurysms, Alternative to Preinterventional DSA?

    Get PDF
    Purpose The 3D time-of-flight (TOF) magnetic resonance angiography (MRA) at 3T shows high sensitivity for intracranial aneurysms but is inferior to three-dimensional digital subtraction angiography (3D-DSA) regarding aneurysm characteristics. We applied an ultra-high-resolution (UHR) TOF-MRA using compressed sensing reconstruction to investigate the diagnostic performance in preinterventional evaluation of intracranial aneurysms compared to conventional TOF-MRA and 3D-DSA. Methods In this study 17 patients with unruptured intracranial aneurysms were included. Aneurysm dimensions, configuration, image quality and sizing of endovascular devices were compared between conventional TOF-MRA at 3T and UHR-TOF with 3D-DSA as gold standard. Quantitatively, contrast-to-noise ratios (CNR) were compared between TOF-MRAs. Results On 3D-DSA, 25 aneurysms in 17 patients were detected. On conventional TOF, 23 aneurysms were detected (sensitivity: 92.6%). On UHR-TOF, 25 aneurysms were detected (sensitivity: 100%). Image quality was not significantly different between TOF and UHR-TOF (p = 0.17). Aneurysm dimension measurements were significantly different between conventional TOF (3.89 mm) and 3D-DSA (4.2 mm, p = 0.08) but not between UHR-TOF (4.12 mm) and 3D-DSA (p = 0.19). Irregularities and small vessels at the aneurysm neck were more frequently correctly depicted on UHR-TOF compared to conventional TOF. Comparison of the planned framing coil diameter and flow-diverter (FD) diameter revealed neither a statistically significant difference between TOF and 3D-DSA (coil p = 0.19, FD p = 0.45) nor between UHR-TOF and 3D-DSA (coil: p = 0.53, FD 0.33). The CNR was significantly higher in conventional TOF (p = 0.009). Conclusion In this pilot study, ultra-high-resolution TOF-MRA visualized all aneurysms and accurately depicted aneurysm irregularities and vessels at the base of the aneurysm comparably to DSA, outperforming conventional TOF. UHR-TOF with compressed sensing reconstruction seems to represent a non-invasive alternative to pre-interventional DSA for intracranial aneurysms

    Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species.

    Get PDF
    BACKGROUND: Mammalian species exhibit a wide range of lifespans. To date, a robust and dynamic molecular readout of these lifespan differences has not yet been identified. Recent studies have established the existence of ageing-associated differentially methylated positions (aDMPs) in human and mouse. These are CpG sites at which DNA methylation dynamics show significant correlations with age. We hypothesise that aDMPs are pan-mammalian and are a dynamic molecular readout of lifespan variation among different mammalian species. RESULTS: A large-scale integrated analysis of aDMPs in six different mammals reveals a strong negative relationship between rate of change of methylation levels at aDMPs and lifespan. This relationship also holds when comparing two different dog breeds with known differences in lifespans. In an ageing cohort of aneuploid mice carrying a complete copy of human chromosome 21, aDMPs accumulate far more rapidly than is seen in human tissues, revealing that DNA methylation at aDMP sites is largely shaped by the nuclear trans-environment and represents a robust molecular readout of the ageing cellular milieu. CONCLUSIONS: Overall, we define the first dynamic molecular readout of lifespan differences among mammalian species and propose that aDMPs will be an invaluable molecular tool for future evolutionary and mechanistic studies aimed at understanding the biological factors that determine lifespan in mammals

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells

    Characteristics of the National Applicant Pool for Clinical Informatics Fellowships (2016-2017)

    Get PDF
    We conducted a national study to assess the numbers and diversity of applicants for 2016 and 2017 clinical informatics fellowship positions. In each year, we collected data on the number of applications that programs received from candidates who were ultimately successful vs. unsuccessful. In 2017, we also conducted an anonymous applicant survey. Successful candidates applied to an average of 4.2 and 5.5 programs for 2016 and 2017, respectively. In the survey, unsuccessful candidates reported applying to fewer programs. Assuming unsuccessful candidates submitted between 2-5 applications each, the total applicant pool numbered 42-69 for 2016 (competing for 24 positions) and 52-85 for 2017 (competing for 30 positions). Among survey respondents (n=33), 24% were female, 1 was black and none were Hispanic. We conclude that greater efforts are needed to enhance interest in clinical informatics among medical students and residents, particularly among women and members of underrepresented minority groups

    Simulations of cosmic ray feedback by AGN in galaxy clusters

    Full text link
    We investigate a numerical model for AGN feedback where for the first time a relativistic particle population in AGN-inflated bubbles is followed within a full cosmological context. In our high-resolution simulations of galaxy cluster formation, we assume that BH accretion is accompanied by energy feedback that occurs in two different modes, depending on the accretion rate itself. Unlike in previous work, we inject a non-thermal particle population of relativistic protons into the AGN bubbles, instead of adopting a purely thermal heating. We then follow the subsequent evolution of the cosmic ray (CR) plasma inside the bubbles, considering both its hydrodynamical interactions and dissipation processes relevant for the CR population. Due to the different buoyancy of relativistic plasma and the comparatively long CR dissipation timescale we find substantial changes in the evolution of clusters as a result of CR feedback. In particular, the non-thermal population can provide significant pressure support in central cluster regions at low thermal temperatures, providing a natural explanation for the decreasing temperature profiles found in cool core clusters. At the same time, the morphologies of the bubbles and of the induced X-ray cavities show a striking similarity to observational findings. AGN feedback with CRs also proves efficient in regulating cluster cooling flows so that the total baryon fraction in stars becomes limited to realistic values of the order of 10%. We find that the partial CR support of the intracluster gas also affects the expected signal of the thermal Sunyaev-Zel'dovich effect, with typical modifications of the integrated Compton-y parameter within the virial radius of the order of 10%. [Abridged]Comment: 15 pages, 7 figures, minor revisions, MNRAS accepte

    Stem Cell Mediation of Functional Recovery after Stroke in the Rat

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Regenerative strategies of stem cell grafting have been demonstrated to be effective in animal models of stroke. In those studies, the effectiveness of stem cells promoting functional recovery was assessed by behavioral testing. These behavioral studies do, however, not provide access to the understanding of the mechanisms underlying the observed functional outcome improvement. [Methodology/Principal Findings]: In order to address the underlying mechanisms of stem cell mediated functional improvement, this functional improvement after stroke in the rat was investigated for six months after stroke by use of fMRI, somatosensory evoked potentials by electrophysiology, and sensorimotor behavior testing. Stem cells were grafted ipsilateral to the ischemic lesion. Rigorous exclusion of spontaneous recovery as confounding factor permitted to observe graft-related functional improvement beginning after 7 weeks and continuously increasing during the 6-month observation period. The major findings were i) functional improvement causally related to the stem cells grafting; ii) tissue replacement can be excluded as dominant factor for stem cell mediated functional improvement; iii) functional improvement occurs by exclusive restitution of the function in the original representation field, without clear contributions from reorganization processes, and iv) stem cells were not detectable any longer after six months. [Conclusions/Significance]: A delayed functional improvement due to stem cell implantation has been documented by electrophysiology, fMRI and behavioral testing. This functional improvement occurred without cells acting as a tissue replacement for the necrotic tissue after the ischemic event. Combination of disappearance of grafted cells after six months on histological sections with persistent functional recovery was interpreted as paracrine effects by the grafted stem cells being the dominant mechanism of cell activity underlying the observed functional restitution of the original activation sites. Future studies will have to investigate whether the stem cell mediated improvement reactivates the original representation target field by using original connectivity pathways or by generating/activating new ones for the stimulus.Financial support from the Hertie Foundation (Germany), and EU grants of the FP-6: DiMI (LSHB-CT-2005-512146), EMIL (LSHC-CT-2004-503569) and Stem Stroke (LSHB-CT-2006-037526) are gratefully acknowledged.Peer Reviewe
    • …
    corecore