155 research outputs found

    A complete record from colonization to extinction reveals density dependence and the importance of winter conditions for a population of the silvery blue, Glaucopsyche lygdamus.

    Get PDF
    Butterflies in the family Lycaenidac are often the focus of conservation efforts. However, our understanding of lycaenid population dynamics has been limited to relatively few examples of long-term monitoring data that have been reported. Here, factors associated with population regulation are investigated using a complete record of a single population of the silvery blue, Glaucopsyche lygdamus Doubleday (Lepidoptera: Lycaenidae). Adults of G. lygdamus were first observed in an annual grassland near Davis, California, in 1982 and were last seen in 2003. Relationships between inter-annual variation in abundance and climatic variables were examined, accounting for density dependent effects. Significant effects of both negative density dependence and climatic variation were detected, particularly precipitation and temperature during winter months. Variation in precipitation, the strongest predictor of abundance, was associated directly and positively with butterfly abundance in the same year. Winter temperatures had a negative effect in the same year, but had a lagged, positive effect on abundance in the subsequent year. Mechanistic hypotheses are posed that include climatic effects mediated through both larval and adult plant resources

    Human observers differ in ability to perceive insect diversity

    Get PDF
    Human perception of biological variation is an important and understudied issue in the conservation and management of natural resources. Here, we took a novel approach by asking 1152 participants, primarily college biology students, to score examples of insect mimicry by the number of distinct kinds of animals they saw. Latent class analysis successfully separated participants based on their accuracy of perception as well as demographic information and opinions about biodiversity. Contrary to expectations, factors such as childhood experience (growing up in urban, suburban or rural areas) did not affect the ability to see biodiversity as much as political views (location on a spectrum from liberal to conservative) or the position that biodiversity is important for the health of the environment. We conclude that research into effective measures of biological education should consider the connection between personal views and perceptions of natural variation

    A Hierarchical Bayesian Approach to Ecological Count Data: A Flexible Tool for Ecologists

    Get PDF
    Many ecological studies use the analysis of count data to arrive at biologically meaningful inferences. Here, we introduce a hierarchical Bayesian approach to count data. This approach has the advantage over traditional approaches in that it directly estimates the parameters of interest at both the individual-level and population-level, appropriately models uncertainty, and allows for comparisons among models, including those that exceed the complexity of many traditional approaches, such as ANOVA or non-parametric analogs. As an example, we apply this method to oviposition preference data for butterflies in the genus Lycaeides. Using this method, we estimate the parameters that describe preference for each population, compare the preference hierarchies among populations, and explore various models that group populations that share the same preference hierarchy

    Identification of source-sink dynamics in mountain lions of the Great Basin

    Get PDF
    Natural and anthropogenic boundaries have been shown to affect population dynamics and population structure for many species with movement patterns at the landscape level. Understanding population boundaries and movement rates in the field for species that are cryptic and occur at low densities is often extremely difficult and logistically prohibitive; however genetic techniques may offer insights that have previously been unattainable. We analyzed thirteen microsatellite loci for 739 mountain lions (Puma concolor) using muscle tissue samples from individuals in the Great Basin throughout Nevada and the Sierra Nevada mountain range to test the hypothesis that heterogeneous hunting pressure results in source-sink dynamics at the landscape scale. We used a combination of non-spatial and spatial model-based Bayesian clustering methods to identify genetic populations. We then used a recently developed Bayesian multilocus genotyping method to estimate asymmetrical rates of contemporary movement between those subpopulations and to identify source and sink populations. We identified two populations at the highest level of genetic structuring with a total of five subpopulations in the Great Basin of Nevada and the Sierra Nevada range. Our results suggest that source-sink dynamics occur at landscape scales for wide-ranging species, such as mountain lions, and that source populations may be those that are under relatively less hunting pressure and that occupy refugia

    Recent Hybrids Recapitulate Ancient Hybrid Outcomes

    Get PDF
    Genomic outcomes of hybridization depend on selection and recombination in hybrids. Whether these processes have similar effects on hybrid genome composition in contemporary hybrid zones versus ancient hybrid lineages is unknown. Here we show that patterns of introgression in a contemporary hybrid zone in Lycaeides butterflies predict patterns of ancestry in geographically adjacent, older hybrid populations. We find a particularly striking lack of ancestry from one of the hybridizing taxa, Lycaeides melissa, on the Z chromosome in both the old and contemporary hybrids. The same pattern of reduced L. melissa ancestry on the Z chromosome is seen in two other ancient hybrid lineages. More generally, we find that patterns of ancestry in old or ancient hybrids are remarkably predictable from contemporary hybrids, which suggests selection and recombination affect hybrid genomes in a similar way across disparate time scales and during distinct stages of speciation and species breakdown

    The Ecology of Individuals: Incidence and Implications of Individual Specialization

    Get PDF
    Most empirical and theoretical studies of resource use and population dynamics treat conspecific individuals as ecologically equivalent. This simplification is only justified if interindividual niche variation is rare, weak, or has a trivial effect on ecological processes. This article reviews the incidence, degree, causes, and implications of individual-level niche variation to challenge these simplifications. Evidence for individual specialization is available for 93 species dis- tributed across a broad range of taxonomic groups. Although few studies have quantified the degree to which individuals are specialized relative to their population, between-individual variation can some- times comprise the majority of the population’s niche width. The degree of individual specialization varies widely among species and among populations, reflecting a diverse array of physiological, be- havioral, and ecological mechanisms that can generate intrapopu- lation variation. Finally, individual specialization has potentially im- portant ecological, evolutionary, and conservation implications. Theory suggests that niche variation facilitates frequency-dependent interactions that can profoundly affect the population’s stability, the amount of intraspecific competition, fitness-function shapes, and the population’s capacity to diversify and speciate rapidly. Our collection of case studies suggests that individual specialization is a widespread but underappreciated phenomenon that poses many important but unanswered questions

    Geographically multifarious phenotypic divergence during speciation

    Get PDF
    Abstract Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference)

    Caterpillars on a Phytochemical Landscape: The Case of Alfalfa and the Melissa Blue Butterfly

    Get PDF
    Modern metabolomic approaches that generate more comprehensive phytochemical profiles than were previously available are providing new opportunities for understanding plant‐animal interactions. Specifically, we can characterize the phytochemical landscape by asking how a larger number of individual compounds affect herbivores and how compounds covary among plants. Here we use the recent colonization of alfalfa (Medicago sativa) by the Melissa blue butterfly (Lycaeides melissa) to investigate the effects of indivdiual compounds and suites of covarying phytochemicals on caterpillar performance. We find that survival, development time, and adult weight are all associated with variation in nutrition and toxicity, including biomolecules associated with plant cell function as well as putative anti‐herbivore action. The plant‐insect interface is complex, with clusters of covarying compounds in many cases encompassing divergent effects on different aspects of caterpillar performance. Individual compounds with the strongest associations are largely specialized metabolites, including alkaloids, phenolic glycosides, and saponins. The saponins are represented in our data by more than 25 individual compounds with beneficial and detrimental effects on L. melissa caterpillars, which highlights the value of metabolomic data as opposed to approaches that rely on total concentrations within broad defensive classes

    Host Plants and Climate Structure Habitat Associations of the Western Monarch Butterfly

    Get PDF
    The monarch butterfly is one of the most easily recognized and frequently studied insects in the world, and has recently come into the spotlight of public attention and conservation concern because of declining numbers of individuals associated with both the eastern and western migrations. Historically, the larger eastern migration has received the most scientific attention, but this has been changing in recent years, and here we report the largest-ever attempt to map and characterize non-overwintering habitat for the western monarch butterfly. Across the environmentally and topographically complex western landscape, we include 8,427 observations of adults and juvenile monarchs, as well as 20,696 records from 13 milkweed host plant species. We find high heterogeneity of suitable habitats across the geographic range, with extensive concentrations in the California floristic province in particular. We also find habitat suitability for the butterfly to be structured primarily by host plant habitat associations, which are in turn structured by a diverse suite of climatic variables. These results add to our knowledge of range and occupancy determinants for migratory species and provide a tool that can be used by conservation biologists and researchers interested in interactions among climate, hosts and host-specific animals, and by managers for prioritizing future conservation actions at regional to watershed scales

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort
    corecore