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Abstract
Modern metabolomic approaches that generate more comprehensive phytochemi-
cal profiles than were previously available are providing new opportunities for 
understanding plant-animal interactions. Specifically, we can characterize the phy-
tochemical landscape by asking how a larger number of individual compounds af-
fect herbivores and how compounds covary among plants. Here we use the recent 
colonization of alfalfa (Medicago sativa) by the Melissa blue butterfly (Lycaeides 
melissa) to investigate the effects of indivdiual compounds and suites of covarying 
phytochemicals on caterpillar performance. We find that survival, development time, 
and adult weight are all associated with variation in nutrition and toxicity, including 
biomolecules associated with plant cell function as well as putative anti-herbivore 
action. The plant-insect interface is complex, with clusters of covarying compounds 
in many cases encompassing divergent effects on different aspects of caterpillar per-
formance. Individual compounds with the strongest associations are largely special-
ized metabolites, including alkaloids, phenolic glycosides, and saponins. The saponins 
are represented in our data by more than 25 individual compounds with beneficial 
and detrimental effects on L. melissa caterpillars, which highlights the value of me-
tabolomic data as opposed to approaches that rely on total concentrations within 
broad defensive classes.
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1  | INTRODUC TION

One of the conceptual pillars of trophic ecology is the idea that 
herbivores must overcome the barrier of plant defensive chemistry 
before extracting the nutrients necessary for growth and repro-
duction (Feeny, Rosenthal, & Berenbaum, 1992). The success of this 
idea is reflected in several areas of research that include coevo-
lution (Agrawal, Petschenka, Bingham, Weber, & Rasmann, 2012), 
ecological specialization (Dyer, 1995), and nutrient flow in ecosys-
tems (Hättenschwiler & Vitousek, 2000). In most cases, progress 
has been made by chemical ecologists focusing on small subsets of 
the specialized metabolites produced by plants and consumed by 
herbivores. The focus on a few charismatic molecules or classes of 
compounds, such as furanocoumarins (Berenbaum, 1983) or car-
diac glycosides (Zalucki, Brower, & Alonso-M, 2001), was at least in 
part necessitated by early methods in natural products chemistry 
that were targeted and not easily optimized for the discovery of 
large suites of co-occurring metabolites (Dyer et al., 2018; Maag, 
Erb, & Glauser, 2015). As technological limitations have dissipated, 
the opportunity now exists for a more comprehensive understand-
ing of the challenges faced by herbivores, with the possibility of 
discovering, among other things, novel compounds and syner-
gistic interactions among compounds (Prince & Pohnert, 2010; 
Richards, Dyer, Smilanich, & Dodson, 2010; Sardans, Penuelas, & 
Rivas-Ubach, 2011). More generally, an important task is to quan-
tify the phytochemical complexity of the antagonistic interaction 
between plants and herbivores, with an eye toward understand-
ing constraints on the evolution of both players (Fordyce & Nice, 
2008; Macel, van Dam, & Keurentjes, 2010) and predicting the for-
mation of new plant-herbivore interactions (Erbilgin, 2018). Here 
we use the example of a specialized herbivore and a recently colo-
nized host plant to investigate the phytochemical landscape from 
the perspective of developing caterpillars. By the "phytochemi-
cal landscape" we mean metabolomic variation among individual 
plants and associated toxic and nutritional effects on, in our case, a 
focal herbivore (Glassmire et al., 2019; Hunter, 2016; Wu, Wilson, 
Chang, & Tian, 2019).

The Melissa blue butterfly, Lycaeides melissa, is specialized on 
larval host plants in the pea family (Fabaceae), primarily in the gen-
era Astragalus and Lupinus. Within the last 200 years, L. melissa has 
colonized introduced alfalfa, Medicago sativa (Fabaceae), at least 
twice and probably multiple times (Chaturvedi et al., 2018), forming 
a heterogeneous patchwork of association throughout the range of 
the butterfly in western North America, often with naturalized or 
weedy patches of M. sativa. In general, M. sativa is a suboptimal host 
plant for L. melissa: individuals that feed on the plant have reduced 
survival and performance relative to individuals feeding on native 
hosts (Forister, Nice, Fordyce, & Gompert, 2009). M. sativa-associ-
ated populations do, however, show evidence for a slight increase 
in the ability to develop on the novel resource relative to popula-
tions that remain on native plants (Gompert et al., 2015). Additional 
evolutionary change in populations associated with the novel host is 
evidenced by reduced female oviposition preference for native hosts 

(Forister et al., 2012) and reduced caterpillar performance on na-
tive hosts (relative to populations that have not shifted to the exotic) 
(Gompert et al., 2015).

The genetic architecture of host use in this system is known to 
be polygenic and characterized by loci with conditionally neutral 
(host-specific) effects and ongoing local adaptation (Gompert et al., 
2015). What is needed next is an understanding of which plant 
traits most affect L. melissa fitness. Previous work has suggested 
that phytochemical variation among host populations is biologically 
significant for caterpillars eating M. sativa (Harrison et al., 2016), 
but the magnitude of these effects and the salient compounds 
are unclear. Moreover, caterpillars do not encounter compounds 
in isolation, but in combinations of covarying molecules, and it is 
unknown how variation among hosts in phytochemical mixtures 
affects herbivore evolution. For example, will the trajectory of fur-
ther local adaptation by L. melissa to M. sativa be a matter of evolv-
ing the ability to detoxify one or a large number of compounds? 
A better understanding of how key compounds covary among 
individual plants could also shed light on the potential for evolu-
tionary response of the plant to herbivores in its introduced North 
American range. Here we use a common garden approach and cat-
erpillars individually reared in a controlled environment to address 
these questions while describing the effects of metabolomic varia-
tion in M. sativa on L. melissa.

2  | METHODS

2.1 | Plants and caterpillars

Plants used in this project were grown at the University of Nevada, 
Reno, Main Station experimental farm. The common garden was 
planted in 2016 with seeds collected the previous year from 45 
plants (previously studied by Harrison et al. (2018)) growing in a 
fallow field in north-western Nevada on the western edge of the 
Great Basin Desert. The focal butterfly, L. melissa, was present in 
the source field but has not colonized the university farm where 
experimental plants were grown. The 45 maternal plants each con-
tributed 15 offspring to a randomized grid design in the common 
garden, irrigated with broadcast sprayers in 2016 and drip in 2017, 
without supplemental fertilization. A single plant was randomly se-
lected from each maternal family for use in the rearing experiment 
reported here as a way to capture as much genetic and phenotypic 
variation as possible.

On 17 and 18 July 2017, a total of 45 L. melissa females were 
collected from an alfalfa-associated population near Verdi, NV, and 
confined to oviposition arenas (three females per arena, 500  ml 
plastic cups) with host plant leaves and mesh lids sprayed with 
Gatorade®, a sports drink with sugar, water, carbohydrates, salt, 
and other ingredients that has been used elsewhere for captive 
butterflies (Mattila & Otis, 2003). After 3 days, eggs were removed 
from leaves, pooled, and kept at room temperature until hatching, 
at which time caterpillars were placed individually in Petri dishes 
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(100 × 25 mm) with leaves of a particular M. sativa individual (which 
became the only plant from which they were fed throughout the 
experiment). Ten caterpillars were assigned to each of the 45 ex-
perimental M. sativa plants (for a total of 450 independently reared 
caterpillars) and kept in a growth chamber set to 25ºC and a 12 hr 
light/12  hr dark cycle. Caterpillars were given new, undamaged 
leaves as needed, approximately every 2–3 days. From each cater-
pillar we recorded survival to adult, sex, date of eclosion (if success-
ful), and adult weight to the nearest 0.01 mg on a Mettler Toledo 
XP26 microbalance. Adult weight is taken as a proxy for fitness in L. 
melissa (Forister et al., 2009).

2.2 | Phytochemistry and plant traits

Metabolomic variation among individual plants was characterized 
with liquid chromatography–mass spectrometry (LC-MS) (Jorge, 
Mata, & António, 2016) using leaves collected on a single day at 
the start of the rearing experiment (as described above, one plant 
was randomly selected from each of 45 maternal lines in a common 
garden). Leaves were taken haphazardly from four different stems, 
avoiding the youngest and oldest leaves, and combined in a single 
paper collection envelope; we also avoided damaged leaves, al-
though plants were exposed to constant, low levels of natural her-
bivory from insect and small mammal herbivores before and during 
the experiment (thus the present study does not address plasticity 
of defense in response to herbivore attack). Vacuum-dried, ground 
leaves (10 mg) were extracted in 2 ml of 70% aqueous ethanol, and 
injected into an Agilent 1,200 analytical high performance liquid 
chromatograph paired with an Agilent 6,230 Time-of-Flight mass 
spectrometer via an electrospray ionization source. Resulting chro-
matograms were analyzed using MassHunter Quantitative Analysis 
(v.B.06.00, Agilent, Santa Clara, CA), and major classes of com-
pounds were identified using characteristic relative mass defects 
(Ekanayaka, Celiz, & Jones, 2015), as described further in Appendix 
1. Leaf protein content was quantified with three replicates 
(~2  mg each) per plant using the Bicinchoninic acid assay (Pierce 
Biotechnology, Waltham, MA). Before grinding, five dried leaflets 
from each sample were weighed to the nearest 0.1 mg, scanned, 
and area was measured using ImageJ (v.1.52a); specific leaf area 
(SLA) was calculated as leaf area divided by dry mass. Finally, leaf 
toughness was measured on fresh material in the common garden, 
at the start of the experiment (mid-July, when leaves were also sam-
pled for chemistry and protein) and at the end of the experiment 
(mid-August), from three leaves per plant at each date, with a pen-
etrometer (Chatillon 516 Series) through the center of the middle 
leaflet, as in (Harrison et al., 2018); the three leaves were selected 
haphazardly, avoiding the oldest and youngest leaves. Leaf tough-
ness (averaged across the three leaves per plant at each collection) 
was correlated between early and late in the season (r = 0.36), but 
we focus on the measurements taken at the first time point in sub-
sequent analyses for consistency with samples taken at that time 
for metabolomics.

2.3 | Overview of analyses of plant traits and 
caterpillar performance

Our analytical strategy to understand the association between phy-
tochemical variation and caterpillar performance followed two com-
plementary paths, one focusing on reducing the number of variables 
(through dimension reduction and feature selection) to produce rela-
tively simple models, and the other on the estimation of effects of 
all individual compounds on caterpillars (without reducing the num-
ber of predictor variables). For the first path, involving dimension 
reduction, we utilized an approach developed for gene transcription 
studies that identifies groups or modules of correlated variables with 
hierarchical clustering (Langfelder & Horvath, 2008); after cluster-
ing, we reduced the number of independent variables by selecting 
among modules and other plant traits (specific leaf area, protein 
and leaf toughness) using lasso regression (Ogutu, Schulz-Streeck, 
& Piepho, 2012). Lasso regression shrinks coefficients for less im-
portant variables to zero, and is thus useful for model selection, in 
contrast to ridge regression which constrains coefficients (providing 
stable estimates) while not excluding variables. Modules (and other 
plant traits) selected in the lasso regression step were subsequently 
analyzed in Bayesian linear models that are useful in this context 
because they allowed us to quantify our confidence in the sign of 
effects (positive or negative) as continuous probabilities (as opposed 
to relying on arbitrary significance cutoffs). For the second analyti-
cal path, we utilized ridge regression (Ogutu et al., 2012) to estimate 
effects for all compounds simultaneously, which allowed us to in-
vestigate the distribution of effects among compounds and classes 
of compounds. Both analytical paths incorporated cross-validation 
during the lasso and ridge regressions (further details below in sec-
tion 2.4.2), and as a means of evaluating the predictive success of the 
Bayesian models. We also used randomization tests to compare the 
performance of modules and individual compounds with randomly 
chosen suites of compounds.

2.4 | Dimension reduction and feature selection

2.4.1 | Clustering of phytochemical variables

We chose an approach (the first set of analyses mentioned above) 
that reduces the number of independent variables while allow-
ing us to learn about the correlational structure of the data, spe-
cifically unsupervised hierarchical clustering as implemented in the 
blockwiseModules function of the WGCNA package (Langfelder 
& Horvath, 2008) in R (R Core Development Team, 2016). Among 
the options in the pipeline, we used positive correlations among 
variables (“signed” network type), merge cut height at 0.25, and 
correlations raised to the power of five (which is where the scale 
free topology index reached a plateau). Through experimentation, 
we found that our results with LC-MS data were robust to varia-
tion in these choices, including the choice of signed or unsigned 
networks. After an initial round of clustering, we took a remaining 
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19 unassigned compounds and put them through a second round of 
clustering (although the majority of consequential compounds were 
identified in the first round). One output of the WGCNA procedure 
is the first eigenvector from each cluster of compounds, which re-
duced our number of predictor variables by a factor of 10.

2.4.2 | Lasso regression and Bayesian models

The resulting eigenvectors plus protein, SLA (specific leaf area) and 
leaf toughness were then put through the feature reduction step 
of lasso regression (Ogutu et al., 2012), a penalized regression that 
allows beta coefficients to be constrained to zero (thus excluding 
variables). We used the cv.glmnet function of the glmnet package 
(Friedman, Hastie, Simon, & Tibshirani, 2016) with cross-validation 
during error reduction set to leave out one plant (and associated cat-
erpillars) at each iteration. The variables selected by the lasso were 
then put into a Bayesian linear model to estimate coefficients and 
associated credible intervals using JAGS (version 3.2.0) run in R with 
the rjags package (Plummer, 2003). Two Markov chains were run for 
10,000 steps for each analysis (no burn in was required) and chain 
performance was assessed by plotting chain histories, and calcu-
lating the Gelman and Rubin convergence diagnostic and effective 
sample sizes (Brooks & Gelman, 1998; Gelman & Rubin, 1992). For 
all models, minimally influential priors for the regression coefficients 
were modeled as a normal distribution with a mean of zero and vari-
ance of 100 (variance = 1/precision). We quantified our confidence 
in the sign of coefficients (positive or negative) as the fraction of the 
posterior samples that were less than zero (for coefficients with a 
median negative value) or greater than zero (for coefficients with a 
median positive value).

All analyses were done using the R statistical language (R Core 
Development Team, 2016) on scaled (z-transformed) predictor vari-
ables, and both the lasso and Bayesian models used binomial (for 
survival), Poisson (for development time), and Gaussian (for adult 
weight) errors. The latter two analyses (development time and adult 
weight) included sex as a factor. The analysis of development time 
also included adult weight as a covariate; while (reciprocally) the 
analysis of adult weight included development time as a predictor. 
These variables are negatively correlated (r = −0.52), and they func-
tion as useful covariates of each other, allowing us to investigate the 
possibility of unique plant effects on weight gain and development 
time, which could not be discovered if, for example, these variables 
were combined into a single performance index.

2.4.3 | Cross-validation and resampling to judge 
model performance

The success of models developed with the dimension reduction 
and feature selection pipeline was judged in two ways. We used a 
cross-validation procedure in which we left out one plant (and as-
sociated caterpillars) in each iteration of the Bayesian model and 

then used the estimated coefficients (for phytochemical variables 
and other plant traits) to predict the performance of the unobserved 
caterpillars. After 45 iterations (one for each plant), we calculated a 
simple correlation coefficient between the observed and predicted 
performance of caterpillars across plants. In addition, we repeatedly 
resampled the original LC-MS data to match the structure of the re-
duced set of predictor variables to ask to what extent randomly as-
sembled modules could outperform the empirically derived modules 
(in other words, if a model contained two modules with 15 and 20 
compounds, simulated predictors would include modules based on 
15 and 20 randomly selected compounds).

2.5 | Individual compound effects

The second path of our two-part analytical strategy involved si-
multaneous estimation of the effects of all individual chemical 
compounds on caterpillar survival, development time, and adult 
weight. For this approach, we again used penalized regression (in 
the glmnet package; Friedman et al., 2016), but this time with ridge 
regression (instead of lasso) which constrains beta coefficients to 
avoid variance inflation but does not eliminate variables. As with 
the analyses above, ridge regression was done using the error struc-
tures appropriate to the specific response variables, and included 
additional covariates where possible (in models of development time 
and adult weight). The resulting coefficients associated with all in-
dividual compounds were examined as a second perspective on the 
modules examined in the first set of analyses, and were used to ask 
to what extent individual compound effects could be predicted by 
the degree to which they vary among individual plants as quantified 
with the simple coefficient of variation. To assess confidence in the 
results of ridge regressions, we used a bootstrap approach, repeat-
edly resampling the data and estimating coefficients 1,000 times, 
noting the compounds whose bootstrap confidence intervals did or 
did not overlap zero (Delaney & Chatterjee, 1986). We also allowed 
for the discovery of interactions among compounds using penalized 
regression on all individual compounds and all pairwise interactions 
between compounds. For ease of interpretation, this final analysis 
of potential interactions used lasso (not ridge) regression, letting the 
coefficients for many of the individual compounds and pairwise in-
teractions go to zero.

3  | RESULTS

Of the 450 caterpillars that started the experiment, 261 were reared 
to eclosion as adults (a mortality rate similar to previous work with 
this system; Gompert et al., 2015) on leaves from 45 individual al-
falfa plants that were characterized for protein, leaf toughness, spe-
cific leaf area, and 163 individual metabolomic features (see Figure 1 
for variation among plants in caterpillar performance and a subset 
of plant traits, and Table S1 for a list of compounds). Hierarchical 
clustering identified 14 subsets (or modules) of compounds with 
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generally low correlations among modules and high correlations 
within modules (see Figures S1 and S2 for correlations within and 
among modules, and Figure S3 for module variation among plants). 
The correlational structure of the phytochemical data is illustrated as 
an adjacency network in Figure 2 (and in Figure S4 colored by com-
pound class instead of module), where it can be seen that some mod-
ules (e.g., modules 1 and 2) contain a great diversity of compound 
types, while other modules are made up of more narrow classes (e.g., 
modules 7 and 8 are mostly saponins, a class of defensive metabo-
lites; Levin, 1976). From the 14 eigenvectors summarizing variation 
in the modules, as well as the other plant traits, lasso regression 
(Ogutu et al., 2012) produced a reduced set of potential predictors 
which were then used in Bayesian multiple regression models that 
included between six and seven independent variables (Table 1). The 
models had reasonably high performance in leave-one-out cross-
validation: correlations between the observed and predicted values 
were between 0.50 and 0.59 (Table 1), and thus model predictions 
explained between 25% and 35% of the observed variation in cat-
erpillar performance. Resampling analyses were similarly successful 
(Figure S5), with only a small fraction (never more than 3%) of ran-
domly generated models exceeding the variance explained by the 
models reported in Table 1.

Variation among plants in the suites of covarying compounds had 
large effects on the caterpillar performance: for example, the beta 
coefficient of −0.40 (on the log-odds scale) associated with module 

3 corresponds to a 0.10 reduction in the probability of survival 
(relative to average) associated with a one unit change in that phy-
tochemical module (Table 1; note that in Table 1 and elsewhere neg-
ative coefficients for development time are associated with fewer 
days, and thus can be thought of as potentially beneficial effects, 
in contrast to negative coefficients for survival and weight that are 
detrimental to caterpillars). The phytochemical predictor variables 
are eigenvectors from clustering analysis, and thus are not entirely 
straightforward to interpret, especially when the clustering analysis 
was itself based on z-transformed data. It is important to note that 
our LC-MS data (used in clustering analysis) consists of peak areas 
divided by the peak of an internal standard, and again divided by the 
dry weight of the sample (thus, in total, referred to as "relative abun-
dance per dry weight"; see Appendix 1 for additional details includ-
ing choice of standard). Variation in these numbers reflects variation 
in concentrations within compounds (among plants), but care should 
be used in comparing among compounds because of different ion-
ization responses relative to the standard (thus the use of z-trans-
formation for among-compound analyses). Nevertheless, the effects 
reported in Table 1 reflect real variation in suites of compounds, as 
can be seen in correlations between the eigenvectors and individual 
compounds in Figure S2, and in variation among plants in average 
z-scores in Figure S3.

In some cases, modules included in the multiple regression mod-
els had common effects across response variables (e.g., the positive 

F I G U R E  1   Variation among plants 
in caterpillar survival (a), development 
time (b) adult weight (c), three individual 
compounds (d–e), and two external 
plant traits, specific leaf area (g) and 
leaf toughness (h). The three example 
compounds shown here (out of the 
163 assayed) were among the top five 
most influential compounds for survival, 
development time, and adult weight: cpd. 
9 is an alkaloid with a negative association 
with survival, cpd. 94 (a peptide) has a 
negative association with development 
time, and cpd. 160 is a phospholipid 
with a negative association with adult 
weight. Individual plants in all panels are 
organized from left to right by decreasing 
caterpillar survival in the top panel (a). 
Standard errors are shown for panels b, c, 
g, and h. The units for d–e are compound 
relative abundance per dry weight of 
sample; the units for specific leaf area 
are cm2/mg, and grams/newton for leaf 
toughness
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association of module 10 with both survival and adult weight or the 
negative association of module 3 also with survival and weight), 
while other modules had more specific effects on a single response 
(e.g., modules 11 and 13 on survival). SLA had a negative associa-
tion with survival and adult weight, with the coefficients for SLA 
(−0.32 for survival and −0.35 for weight) being of similar magnitude 
to some of the phytochemical effects. Neither leaf toughness nor 
protein had sufficiently strong associations with any of our caterpil-
lar response variables to pass the initial filter of the cross-validated 
lasso regressions.

Module-based analyses (as in Table 1) focused on feature reduc-
tion with lasso regression; as a complementary analytical approach, 
we also used ridge regression (Ogutu et al., 2012) on all of the indi-
vidual compounds (ridge regression estimates effects of compounds 
without excluding variables as in lasso regression). Analyses of indi-
vidual compounds by ridge regression (Figure 3) were broadly con-
sistent with the strongest module-specific effects, as can be seen, 
for example, with module 10 having positive effects on survival and 
adult weight in module analyses (Table 1) and in compound-specific 
analyses (Figure  3). Similarly, the individual compounds in module 
3 had negative compound-specific effects on survival (Figure  3), 

and that module had the strongest negative effect on survival in 
the eigenvector-based analyses in Table  1. Not surprisingly, the 
larger modules (with a greater number of covarying compounds, 
including many primary metabolites) tended to have a more com-
plex mix of positive and negative effects (for example, modules 1 
and 2, Figure  3). For ease of interpretation, the coefficients from 
compound-specific regressions of survival and development time (in 
Figures 3 and 4) have been back-transformed to be on the scales of 
probability and days (respectively), and displayed as changes relative 
to intercepts. For example, a compound with a relatively large effect 
on survival in Figure 3 could be associated with a 0.005 reduction 
in the probability of survival relative to average survival and while 
holding other compounds constant.

We saw some variation among classes of compounds in their ef-
fects on caterpillars (Figure 4). All classes included positive and nega-
tive effects, with saponins, alkaloids, and phenolic glycosides including 
some of the stronger negative effects of individual compounds, while 
lipids and sterols tended toward positive associations with survival and 
development (Figure 4). We also considered potential pairwise inter-
actions among individual compounds, and found few interactions that 
passed the filter of the penalized regression (Table S2), at least relative 

F I G U R E  2   Illustration of correlational 
structure among compounds: each 
node in the network is a compound, and 
compounds are linked by a line if they 
are correlated among individual plants 
at 0.5 or above (links among compounds 
in modules 12–14 represent weaker 
correlations, greater than 0.1; see main 
text for details). Nodes are clustered in 
space for ease of visualization, but relative 
distances among nodes (and the relative 
lengths of lines) convey no additional 
information. Two letter codes within 
nodes indicate compound classes, as 
explained in the legend. Colors of nodes 
correspond to membership in modules 
as determined by hierarchical cluster 
analysis; the color key to the 14 modules 
is shown in the lower left (also see Figure 
S4 where nodes are colored by compound 
class). Not shown are a small number 
of compounds with weak connections 
to all other compounds, including two 
compounds that were not included in any 
module (shown as module zero in Figure 3)
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to the large number of potential interactions. Saponins and alkaloids 
tended to be overrepresented in the interactions that were detected, 
and phenolic glycosides were involved in stronger negative interac-
tions relative to other compounds (Figure S6). We did not find evidence 
that more or less variable compounds (among individual plants) had 
differential effects on caterpillars (Figure S7).

4  | DISCUSSION

The results reported here represent a dissection of the phyto-
chemical landscape facing a specialized insect herbivore attacking 
a recently colonized host plant (Hunter, 2016). The phytochemi-
cal landscape is both physical, referring to variation in compounds 
among individual plants in a common garden (Figure S3), and hy-
pothetical to the extent that effects of individual compounds on 

caterpillars are estimated, although compounds are, of course, not 
encountered in isolation. Our exploration of the phytochemical 
landscape facing L. melissa on M. sativa is necessarily a first draft 
based on a single point in time. Despite the snapshot nature of our 
study, models including suites of covarying metabolites and other 
plant traits had predictive success for caterpillar performance and 
suggested different natural products affecting survival, devel-
opment time and adult weight. Previous work with M. sativa and 
other insect herbivores has focused on saponins (Levin, 1976), and 
a simple outcome from our study could have been that one or a 
small number of saponins have anti-herbivore properties that re-
duce fitness of our focal insect. Instead, we find large numbers of 
compounds with potentially consequential effects on caterpillars 
(Figure 3), and which were in some cases of similar magnitude or 
greater than the effects of morphological features, including leaf 
toughness and SLA (Carmona, Lajeunesse, & Johnson, 2011).

 
Survival coefficient 
(CI; prob.)

Development time 
coefficient (CI, prob.)

Weight coefficient 
(CI, prob.)

m2 0.14 (−2.06, 0.48; .80) −0.01 (−0.04, 0.02; .77)  

m3 −0.40 (−0.67, −0.14; 
>.99)

  −0.44 (−0.84, 
−0.03; .98)

m4     0.29 (−0.14, 0.70; 
.91)

m6   −0.01 (−0.03, 0.01; .80)  

m9 −0.30 (−0.63, 0.03; .96) 0.01 (−0.02, 0.04; .79)  

m10 0.35 (0.08, 0.62; >.99)   0.40 (−0.01, 0.82; 
.98)

m11 0.36 (0.14, 0.58; >.99)    

m13 −0.18 (−0.43, 0.06; .93)    

m14   0.01 (−0.02, 0.03; .71)  

SLA −0.32 (−0.56, −0.08; 
>.99)

  −0.35 (−0.72, 
0.012; .97)

Sex / 0.06 (0.02, 0.10; >.99) 1.12 (0.40, 1.84; 
>.99)

mg / −0.03 (−0.05, −0.01; >.99) /

Days / / −1.41 (−1.76, −1.05; 
>.99)

Intercept 0.34 (0.14, 0.54; >.99) 3.48 (3.45, 3.52; >.99) 10.36 (9.81, 10.91; 
>.99)

Validation 0.59 0.59 0.50

Note: For each regression coefficient, numbers in parentheses are 95% credible intervals (CI, the 
first two numbers) and the probability that the coefficient has the estimated sign (e.g., 0.80 for 
the m2 survival coefficient of 0.14 indicates a 80% probability that the m2 module has a positive 
effect on survival). Note that negative coefficients for development time indicate faster caterpillar 
development (fewer days) associated with variation in a particular module. Modules (listed in the 
left column) are only shown if they were included in one of the three regressions following feature 
selection using the lasso regression (see main text for additional details). Empty spaces in the Table 
appear if a particular module was selected through the lasso regression for one or two analyses but 
not all three (m3, for example, was not selected by lasso regression for development time). Slash 
marks (/) indicate variables not considered for a particular analysis (e.g., sex, adult weight [mg], and 
development time [days] were not possible for the survival analysis because they are not observed 
on dead individuals). Values for “validation” shown in the last row are the correlation between 
observed and predicted values in cross-validation (Figure S4).

TA B L E  1   Results from Bayesian 
regressions of module eigenvectors 
and covariates predicting caterpillar 
survival, development time, and adult 
weight (as binomial, Poisson, and 
Gaussian regressions, respectively, with 
corresponding units in log-odds, log 
number of days, and milligrams)
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We find that prominent classes of specialized metabolites in our 
focal plants, such as saponins and peptides, include compounds with 
both positive and negative effects on survival and development of 
caterpillars. Positive effects of these compounds are potentially 

associated with feeding stimulation, as has been observed (along 
with other positive effects) for other specialist herbivores and 
plant toxins (Seigler & Price, 1976; Smilanich, Fincher, & Dyer, 
2016). Negative effects of saponins on insects potentially include 

F I G U R E  3   Effects of individual compounds on survival, development time, and adult weight, as estimated by ridge regression (using 
binomial, Poisson, and Gaussian models, respectively). The strength of effect for each compound is indicated by the horizontal extent of 
each bar, and compounds are grouped by modules (m1, m2, etc.); the order of compounds along the vertical axis is arbitrary within modules 
and fixed across columns. Orange colors indicate negative effects on survival, development, and weight, while blue colors are positive 
effects (note that negative effects for development time correspond to fewer days, or more rapid development). The darker shades of 
orange and blue mark coefficients whose 95% confidence intervals did not overlap zero in 1,000 bootstrap samples. Values for survival 
and development time have been back-transformed from units on the log-odds and log scales to units of probability and days to pupation, 
and are shown as changes from the mean or intercept values. For example, a negative (orange) survival coefficient of 0.005 means a 
reduction of that amount from the average probability of survival associated with variation in a particular compound. The 15 compounds 
with the largest coefficients (by absolute value) and bootstrap intervals not overlapping zero are labeled by compound classes (see Figure 2 
for abbreviations) in each panel. Structural annotations are shown to the right for six compounds based on matches from the METLIN 
metabolomics database, as follows by compound number: 154 (unidentified sterol); 9 (unidentified alkaloid); 60 (soyasaponin A3); 40 
(unidentified saponin); 46 (medicagenic acid 3-O-triglucoside); 45 (medinoside E). Those same compounds are identified in parentheses in 
the main panels next to bars corresponding to their individual effects
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disruption of hormone production (Chaieb, 2010), although exact 
modes of action on L. melissa will await further study. Although many 
of the compounds with strong effects are specialized metabolites 
(including alkaloids and phenolic glycosides, as well as saponins and 
peptides), we also find both positive and negative effects on cat-
erpillar performance associated with primary metabolites (Figure 4), 
especially phospholipids (Figure  2). These could be direct effects 
if a compound is suboptimal for development, or they could be as-
sociated with nutritional imbalance (Behmer, 2009), such that too 
much of one nutrient makes it difficult for caterpillars to consume a 
balanced diet. It has been suggested that the presentation of unbal-
anced nutrition can be a kind of anti-herbivore strategy (Berenbaum, 
1995), although this has not been studied in the L. melissa-M. sativa 
interaction.

The finding that our specialist herbivore is affected by a wide 
range of metabolites that vary greatly even within a single host 
population has implications for our understanding of heterogene-
ity in the system, and also for local adaptation of the herbivore to 
the novel host. Lycaeides melissa typically colonizes weedy or feral 
patches of M. sativa on roadsides or integrated into natural commu-
nities, and previous work has documented dramatic variation among 
individual alfalfa locations (often in close proximity) in the extent 
to which they can support caterpillar development (Harrison et al., 
2016). Previous phytochemical data with a lower resolution was less 
successful in explaining that variation (Harrison et al., 2016), but the 

results reported here suggest that among-patch variation could be 
explained by future studies using detailed metabolomic data. The 
within-population complexity described in the current study also 
raises the possibility that the novel host presents a multi-faceted 
and potentially ever-shifting target from the perspective of evolv-
ing butterfly populations (Chaturvedi et al., 2018; Gompert et al., 
2015; Harrison et al., 2016). In particular, it is possible that M. sativa 
defense against a specialist herbivore might be realized through dif-
ferent combinations (within and among populations) of individually 
acting compounds, thus making it less likely that butterflies in any 
one population possess an effective suite of alleles that improve fit-
ness on M. sativa.

The correlational structure of the phytochemical variation that 
we observed has implications for the evolution of plant defense 
and the accumulation of insect herbivores on M. sativa. Specifically, 
correlations among modules (which are themselves composed of a 
diversity of compound types) should make it possible to hypothe-
size directions of least resistance for defense evolution. Module 
3, including an alkaloid with a prominent effect on caterpillars but 
also phospholipids and saponins, had a negative effect on survival 
(Table 1, Figure 3). Module 3 negatively covaried with module 2, 
which was itself positively associated with caterpillar survival (in-
cluding a peptide of large effect but many other compound types 
as well). Thus an increase in module 3 and an associated decrease 
in 2 would be beneficial for the plant, at least with respect to 

F I G U R E  4   Violin plots of compound-
specific effects (coefficients from ridge 
regressions) summarized by chemical 
classes. Sample sizes for each category 
are shown above the top panel ("Other" 
includes one sugar, two pigments, and two 
halogenated compounds). Categories are 
arranged from left to right based on the 
gradient of median positive to negative 
effects on survival. Coefficients for 
survival (a) and development time (b) have 
been back-transformed from the units of 
log-odds and log to probability and days 
to pupation, respectively, and shown as 
deviations from the mean or intercept 
value (as in Figure 3). Note that negative 
effects for development time correspond 
to fewer days (more rapid development). 
Violin plots show medians (black dots) 
and interquartile ranges (boxes); vertical 
lines are upper and lower fences (the 
third quartile + 1.5 * the interquartile 
range, and the lower quartile −1.5 * 
the interquartile range, respectively) 
surrounded by kernel density envelopes
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herbivory by our focal herbivore. Predicting evolutionary response 
by M. sativa would of course depend on a genetic understanding of 
the relevant plant traits, which the present study does not include. 
However, a recent study of M. melissa performance on a related 
plant, Medicago truncatula, found that genetic variation in the plant 
explained a substantial proportion of phenotypic variation (be-
tween 8% and 57%) in phytochemical and structural traits but also 
in caterpillar performance (Gompert et al., 2019). Of course, most 
plants do not have the luxury of optimizing defense against a single 
herbivore, and it is easy to imagine that improvements in defense 
against one enemy could lead to increased attraction to another 
(Salazar et al., 2018), especially given the diversity of effects even 
within major classes studied here, including saponins and phenolic 
glycosides. Compounds in the latter class (phenolics) were found 
to have strong positive and negative effects on assemblages of 
arthropods associated with the maternal plants from which seeds 
were collected to start the common garden used in the present 
study (Harrison et al., 2018).

The results reported here raise a number of avenues for future 
exploration, including the apparent overrepresentation of both sa-
ponins and alkaloids in interactions with other compounds (Figure 
S6). Relative mass defect (RMD) is a useful tool for the categori-
zation of compounds (Table S1), but it has limitations in complex 
mixtures; we are developing methods that use other data from 
high-resolution mass spectrometry to further refine categoriza-
tion of Medicago metabolites (Philbin & Forister, n.d.). Also, in the 
present study, we have not attempted to separate constitutive and 
induced defenses (Jansen et al., 2009) as the plants in the common 
garden were exposed to natural and continuous levels of herbivory. 
We also acknowledge that feeding under laboratory conditions is 
of course not natural, although we found in a previous study that 
genetic variants (in caterpillars) associated with success in labora-
tory feeding trials were at least partially predictive of genetic varia-
tion associated with alfalfa use by L. melissa in the wild (Chaturvedi 
et al., 2018). Thus it is clear that metabolomic data, such as those 
analyzed here, have the potential to both open up new avenues 
of conceptual development in plant-insect interactions and to link 
micro-evolutionary trajectories across hosts and herbivores.

ACKNOWLEDG MENTS
This work was supported by National Science Foundation grant 
DEB-1638793 to MLF and CDD, DEB-1638768 to ZG, DEB-1638773 
to CCN, DEB-1638922 to JAF, and DEB-1638602 to CAB; MLF was 
additionally supported by a Trevor James McMinn professorship. 
Thanks to Ian Wallace, the Hitchcock Center for Chemical Ecology 
and the PIG group at UNR for discussion and expertise.

CONFLIC T OF INTERE S T
The authors declare no competing interests.

AUTHOR CONTRIBUTIONS
MLF: designed experiment, conducted analyses, wrote first draft. 
SY: conducted experiment and contributed to experimental design. 

CSP, CDD, BH: generated and interpreted phytochemistry and pro-
tein data. MLF, JGH, OS: developed and maintained common gar-
den. JAF, ZHM, CCN, LAR: contributed to analyses and experimental 
design. CAB, JAF, ZG, CCN: contributed to experimental design. All 
authors: contributed to writing.

DATA AVAIL ABILIT Y S TATEMENT
Data are available from the Dryad Digital Repository: https://doi.
org/10.5061/dryad.c2fqz​614r.

ORCID
Matthew L. Forister   https://orcid.org/0000-0003-2765-4779 
Joshua G. Harrison   https://orcid.org/0000-0003-2524-0273 
James A. Fordyce   https://orcid.org/0000-0002-2731-0418 
Chris C. Nice   https://orcid.org/0000-0001-9930-6891 

R E FE R E N C E S
Agrawal, A. A., Petschenka, G., Bingham, R. A., Weber, M. G., & Rasmann, 

S. (2012). Toxic cardenolides: Chemical ecology and coevolution of 
specialized plant–herbivore interactions. New Phytologist, 194(1), 
28–45.

Balsevich, J. J., Bishop, G. G., & Deibert, L. K. (2009). Use of digitoxin 
and digoxin as internal standards in HPLC analysis of triterpene sapo-
nin-containing extracts. Phytochemical Analysis, 20(1), 38–49.

Behmer, S. T. (2009). Insect herbivore nutrient regulation. Annual Review 
of Entomology, 54, 165–187.

Berenbaum, M. (1983). Coumarins and caterpillars: A case for coevolu-
tion. Evolution, 37(1), 163–179.

Berenbaum, M. R. (1995). Turnabout is fair play - secondary roles for pri-
mary compounds. Journal of Chemical Ecology, 21, 925–940.

Brooks, S. P., & Gelman, A. (1998). General methods for monitoring 
convergence of iterative simulations. Journal of Computational and 
Graphical Statistics, 7(4), 434–455.

Carmona, D., Lajeunesse, M. J., & Johnson, M. T. J. (2011). Plant traits that 
predict resistance to herbivores. Functional Ecology, 25(2), 358–367.

Chaieb, I. (2010). Saponins as insecticides: A review. Tunisian Journal of 
Plant Protection, 5(1), 39–50.

Chaturvedi, S., Lucas, L. K., Nice, C. C., Fordyce, J. A., Forister, M. L., & 
Gompert, Z. (2018). The predictability of genomic changes underly-
ing a recent host shift in Melissa blue butterflies. Molecular Ecology, 
27(12), 2651–2666. https://doi.org/10.1111/mec.14578

Delaney, N. J., & Chatterjee, S. (1986). Use of the bootstrap and cross-val-
idation in ridge regression. Journal of Business & Economic Statistics, 
4(2), 255–262.

Dyer, L. A. (1995). Tasty generalists and nasty specialists - antipredator 
mechanisms in tropical lepidopteran larvae. Ecology, 76, 1483–1496.

Dyer, L. A., Philbin, C. S., Ochsenrider, K. M., Richards, L. A., Massad, T. 
J., Smilanich, A. M., … Jeffrey, C. S. (2018). Modern approaches to 
study plant–insect interactions in chemical ecology. Nature Reviews 
Chemistry, 2(6), 50–64. https://doi.org/10.1038/s4157​0-018-0009-7

Einstein, A. (1905). Ist die Trägheit eines Körpers von seinem Energieinhalt 
abhängig? Annalen der Physik, 323(13), 639–641.

Ekanayaka, E. A. P., Celiz, M. D., & Jones, A. D. (2015). Relative mass 
defect filtering of mass spectra: A path to discovery of plant spe-
cialized metabolites. Plant Physiology, 167, 1221–1232. https://doi.
org/10.1104/pp.114.251165

Erbilgin, N. (2018). Phytochemicals as mediators for host range expan-
sion of a native invasive forest insect herbivore. New Phytologist, 221, 
1268–1278.

Feeny, P., Rosenthal, G. A., & Berenbaum, M. R. (1992). The evolution 
of chemical ecology: Contributions from the study of herbivorous 

https://doi.org/10.5061/dryad.c2fqz614r
https://doi.org/10.5061/dryad.c2fqz614r
https://orcid.org/0000-0003-2765-4779
https://orcid.org/0000-0003-2765-4779
https://orcid.org/0000-0003-2524-0273
https://orcid.org/0000-0003-2524-0273
https://orcid.org/0000-0002-2731-0418
https://orcid.org/0000-0002-2731-0418
https://orcid.org/0000-0001-9930-6891
https://orcid.org/0000-0001-9930-6891
https://doi.org/10.1111/mec.14578
https://doi.org/10.1038/s41570-018-0009-7
https://doi.org/10.1104/pp.114.251165
https://doi.org/10.1104/pp.114.251165


     |  11FORISTER et al.

insects. Herbivores: their Interactions with Secondary Plant Metabolites, 
2, 1–44.

Fordyce, J. A., & Nice, C. C. (2008). Antagonistic, stage-spe-
cific selection on defensive chemical sequestration in 
a toxic butterfly. Evolution, 62, 1610–1617. https://doi.
org/10.1111/j.1558-5646.2008.00388.x

Forister, M. L., Nice, C. C., Fordyce, J. A., & Gompert, Z. (2009). Host 
range evolution is not driven by the optimization of larval perfor-
mance: The case of Lycaeides melissa (Lepidoptera: Lycaenidae) and 
the colonization of alfalfa. Oecologia, 160, 551–561. https://doi.
org/10.1007/s0044​2-009-1310-4

Forister, M. L., Scholl, C. F., Jahner, J. P., Wilson, J. S., Fordyce, J. A., 
Gompert, Z., … Nice, C. C. (2012). Specificity, rank preference and 
the colonization of a non-native host plant by the Melissa blue but-
terfly. Oecologia, 172, 177–188.

Friedman, J., Hastie, T., Simon, N., & Tibshirani, R. (2016). Lasso and 
elastic-net regularized generalized linear models. R-Package Version 
2.0-5.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation 
using multiple sequences. Statistical Science, 7(4), 457–472.

Glassmire, A. E., Philbin, C., Richards, L. A., Jeffrey, C. S., Snook, J. S., 
& Dyer, L. A. (2019). Proximity to canopy mediates changes in the 
defensive chemistry and herbivore loads of an understory tropical 
shrub, Piper kelleyi. Ecology Letters, 22(2), 332–341.

Gompert, Z., Brady, M., Chalyavi, F., Saley, T. C., Philbin, C. S., Tucker, M. 
J., … Lucas, L. K. (2019). Genomic evidence of genetic variation with 
pleiotropic effects on caterpillar fitness and plant traits in a model 
legume. Molecular Ecology, 28(12), 2967–2985.

Gompert, Z., Jahner, J. P., Scholl, C. F., Wilson, J. S., Lucas, L. K., Soria-
Carrasco, V., … Forister, M. L. (2015). The evolution of novel host 
use is unlikely to be constrained by trade-offs or a lack of genetic 
variation. Molecular Ecology, 24, 2777–2793.

Harrison, J. G., Gompert, Z., Fordyce, J. A., Buerkle, C. A., Grinstead, R., 
Jahner, J. P., … Forister, M. L. (2016). The many dimensions of diet 
breadth: Phytochemical, genetic, behavioral, and physiological per-
spectives on the interaction between a native herbivore and an ex-
otic host. PLoS ONE, 11, e0147971.

Harrison, J. G., Philbin, C. S., Gompert, Z., Forister, G. W., Hernandez-
Espinoza, L., Sullivan, B. W., … Forister, M. L. (2018). Deconstruction 
of a plant-arthropod community reveals influential plant traits with 
nonlinear effects on arthropod assemblages. Functional Ecology, 
32(5), 1317–1328.

Hättenschwiler, S., & Vitousek, P. M. (2000). The role of polyphenols in 
terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution, 
15(6), 238–243.

Hunter, M. D. (2016). The phytochemical landscape: Linking trophic inter-
actions and nutrient dynamics. Princeton: Princeton University Press.

Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. 
H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis 
of the interaction between plants and herbivores. Metabolomics, 
5(1), 150.

Jorge, T. F., Mata, A. T., & António, C. (2016). Mass spectrometry as a 
quantitative tool in plant metabolomics. Philosophical Transactions of 
the Royal Society A: Mathematical, Physical and Engineering Sciences, 
374(2079), 20150370.

Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted 
correlation network analysis. BMC Bioinformatics, 9(1), 559.

Levin, D. A. (1976). The chemical defenses of plants to pathogens and 
herbivores. Annual Review of Ecology and Systematics, 7(1), 121–159.

Maag, D., Erb, M., & Glauser, G. (2015). Metabolomics in plant-herbivore 
interactions: Challenges and applications. Entomologia Experimentalis 
Et Applicata, 157(1), 18–29.

Macel, M., van Dam, N. M., & Keurentjes, J. J. B. (2010). Metabolomics: 
The chemistry between ecology and genetics. Molecular Ecology 
Resources, 10(4), 583–593.

Mattila, H. R., & Otis, G. W. (2003). A comparison of the host preference 
of monarch butterflies (Danaus plexippus) for milkweed (Asclepias 
syriaca) over dog-strangler vine (Vincetoxicum rossicum). Entomologia 
Experimentalis Et Applicata, 107, 193–199.

Ogutu, J. O., Schulz-Streeck, T., & Piepho, H.-P. (2012). Genomic selection 
using regularized linear regression models: ridge regression, lasso, 
elastic net and their extensions. BMC Proceedings, 6, S10. https://doi.
org/10.1186/1753-6561-6-S2-S10

Philbin, C. S., & Forister, M. L. (n.d.). Clustering and classification of phyto-
chemicals from an experimental system using Bayesian model clustering.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphi-
cal models using Gibbs sampling. In Proceedings of the 3rd interna-
tional workshop on distributed statistical computing, vol. 124, Viena, 
Austria.

Prince, E. K., & Pohnert, G. (2010). Searching for signals in the noise: 
Metabolomics in chemical ecology. Analytical and Bioanalytical 
Chemistry, 396(1), 193–197.

R Core Development Team (2016). R: A Language and Environment for 
Statistical Computing. Vienna, Austria: R Foundation for Statistical 
Computing.

Richards, L. A., Dyer, L. A., Smilanich, A. M., & Dodson, C. D. (2010). 
Synergistic effects of amides from two Piper species on general-
ist and specialist herbivores. Journal of Chemical Ecology, 36(10), 
1105–1113.

Salazar, D., Lokvam, J., Mesones, I., Pilco, M. V., Zuñiga, J. M. A., de 
Valpine, P., & Fine, P. V. A. (2018). Origin and maintenance of chem-
ical diversity in a species-rich tropical tree lineage. Nature Ecology & 
Evolution, 2(6), 983–990.

Sardans, J., Penuelas, J., & Rivas-Ubach, A. (2011). Ecological metabo-
lomics: Overview of current developments and future challenges. 
Chemoecology, 21(4), 191–225.

Seigler, D., & Price, P. W. (1976). Secondary compounds in plants: Primary 
functions. The American Naturalist, 110(971), 101–105.

Smilanich, A. M., Fincher, R. M., & Dyer, L. A. (2016). Does plant appar-
ency matter? Thirty years of data provide limited support but reveal 
clear patterns of the effects of plant chemistry on herbivores. New 
Phytologist, 210(3), 1044–1057.

Smith, C. A., O'Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. 
R., … Siuzdak, G. (2005). METLIN: A metabolite mass spectral data-
base. Therapeutic Drug Monitoring, 27, 747–751.

Wu, S., Wilson, A. E., Chang, L., & Tian, L. (2019). Exploring the phyto-
chemical landscape of the early-diverging flowering plant Amborella 
trichopoda Baill. Molecules, 24(21), 3814.

Zalucki, M. P., Brower, L. P., & Alonso-M, A. (2001). Detrimental effects 
of latex and cardiac glycosides on survival and growth of first-instar 
monarch butterfly larvae Danaus plexippus feeding on the sandhill 
milkweed Asclepias humistrata. Ecological Entomology, 26(2), 212–224. 
https://doi.org/10.1046/j.1365-2311.2001.00313.x

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Forister ML, Yoon SA, Philbin CS, et 
al. Caterpillars on a phytochemical landscape: The case of 
alfalfa and the Melissa blue butterfly. Ecol Evol. 2020;00:1–
13. https://doi.org/10.1002/ece3.6203

APPENDIX 1

https://doi.org/10.1111/j.1558-5646.2008.00388.x
https://doi.org/10.1111/j.1558-5646.2008.00388.x
https://doi.org/10.1007/s00442-009-1310-4
https://doi.org/10.1007/s00442-009-1310-4
https://doi.org/10.1186/1753-6561-6-S2-S10
https://doi.org/10.1186/1753-6561-6-S2-S10
https://doi.org/10.1046/j.1365-2311.2001.00313.x
https://doi.org/10.1002/ece3.6203


12  |     FORISTER et al.

ADDITIONAL PHY TOCHEMIC AL ME THODS 1:  LC-TOF 
ANALYSIS OF FOLIAR PL ANT TISSUE
Foliar tissue was dried in vacuo and individual leaves were selected 
haphazardly from individual plants and finely ground (TissueLyser 
II, Quiagen; Hilden, Germany). Approximately 10 mg of ground fo-
liar tissue was weighed and extracted in 2.00 ml of 70% aqueous 
ethanol, and briefly vortexed before 15 min of sonication. This sus-
pension was centrifuged (500 rpm) for 10 min, then 1 ml aliquots of 
the supernatant were filtered through a 96-well filter (AcroPrep, 
1  ml, 1  μm glass fiber) into glass vial inserts and capped with a 
silicone mat before analysis. Chromatography was performed on 
an Agilent 1,200 analytical HPLC equipped with a binary pump, 
autosampler, column compartment, and diode array UV detector, 
coupled to an Agilent 6,230 Time-of-Flight mass spectrometer 
via an electrospray ionization source (ESI-TOF; gas temperature: 
325°C, flow: 10 L/m; nebulizer pressure: 35 psig; VCap: 3,500 V; 
fragmentor: 165 V; skimmer: 65 V; octopole: 750 V). Extracts (1.00 
μL) were co-injected with 0.50 μL of digitoxin internal standard 
(0.200  mM, Sigma-Aldrich) and eluted at 0.500  ml/min through 
a Kinetex EVO C18 column (Phenomenex, 2.1  ×  100  mm, 2.6 
μ, 100  Å) at 40°C. The linear binary gradient was comprised of 
buffers A (water containing 0.1% formic acid) and B (acetonitrile 
containing 0.1% formic acid) changing over 30  min accordingly: 
0–1 min 5% B, ramp to 50% B at 4 min, ramp to 100% B at 21 min, 
21–25 min 100% B ramping to 1.00 ml/min, before re-equilibrating 
the column from 25–30 min at 5% B, 0.5 ml/min.

Individual compounds were quantified relative to the digi-
toxin internal standard using Agilent MassHunter Quantitative 
Analysis. Digitoxin is a commercially available cardenolide which 
has previously been used as an internal standard in saponin analysis 
(Balsevich, Bishop, & Deibert, 2009). Its structural similarity to, and 
lack of coelution with, saponins and its absence in Medicago extracts 
make it an ideal internal standard for quantitation of saponins, the 
focal phytochemical class in this study. While digitoxin allows for 
the quantitation of saponins as “digitoxin equivalents,” this does not 
extend to other phytochemical classes due to differences in ioniza-
tion efficiency inherent in structural differences for other classes. 
In these cases, the digitoxin internal standard still serves to partially 
correct for between-run variation in instrument response. We do 
not make quantitative assertions between phytochemical classes, 
only assertions based on their within-class variation for this reason.

Putative phenolics (200–400 ppm) and saponins (400–650 ppm) 
were annotated using the relative mass defect (RMD) characteristic 
of each phytochemical (see next appendix section). Compounds with 
RMD greater than 650 were presumed to be lipids or sterols. These 
assignments were revised by identifying presumed peptides based 
on even m/z features. Mass spectra of presumed phenolics, sapo-
nins, and lipids were cross-referenced against the METLIN database 
(Smith et al., 2005) to further categorize annotations into phospho-
lipids, vitamins (vitamin D derivatives), carotenoids, sterols, amino 
acids, alkaloids, and sugars. One compound displayed an isotope 
distribution characteristic of a chlorinated structure and was desig-
nated as being halogenated. Due to the lack of structural information 

in ESI-TOF mass spectra, annotation beyond this classification was 
not possible.
ADDITIONAL PHY TOCHEMIC AL ME THODS 2:  REL A-
TIVE MA SS DEFEC T (RMD)
Relative mass defect is a recently developed method for inferring 
structural information from high-resolution mass spectrometry data 
(Ekanayaka et al., 2015) which we have used to aid in the classifica-
tion of metabolites in M. sativa and to a lesser extent propose pu-
tative structures. Here we describe the theoretical background for 
the calculation and use of relative mass defect. Mass defect is the 
deviation of atomic mass (see definitions below) from its mass num-
ber (e.g., hydrogen: AH = 1, mH = 1.00784 Da, dH = 0.00784). Relative 
mass defect of an atom (RMDa) in ppm is calculated as:

Where ma is the atomic mass and Aa is the mass number of that 
atom. Although H has a positive mass defect (RMDH = 7,780 ppm), 
mass loss due to the strong nuclear force (Einstein, 1905) leads to 
increasingly negative mass defect as A increases. Atoms commonly 
found in natural products (RMDN = 221, RMDC = 0, RMDO = −319, 
RMDP = −846, RMDS = −873 ppm) have a relative mass defect which 
is a full order of magnitude lower than that of hydrogen. As a result, 
the relative mass defect (RMDM) of a molecule estimates the num-
ber of hydrogen atoms relative to other atoms in a natural product: 
a high RMD molecule has a higher %H than a low RMD molecule. 
When chemical formula is known, computing the theoretical RMDM 
of a molecule M is facile:

Where na is the count of the ath element in the set of elements 
composing a natural product, and N is the number of elements in 
that natural product. As a chemical formula this would appear in the 
form CnCHnHNnNOnOPnPSnS. When the chemical formula of a natural 
product is unknown, the RMD of a molecule M can be calculated 
from HRMS data:

Where m/zM and m/zMt are the mass to charge ratio and nominal 
mass-to-charge ratio of molecular ion M, respectively.

The RMD of a molecular ion then serves as an experimental esti-
mate of degree of unsaturation; or more generally, how many H are 
present per unit of molecular mass. This metric can be very useful 
for discriminating natural products which may have the same nomi-
nal mass but differ in exact mass, obtained via HRMS data which 
is accurate at a sub-ppm level. In Figure S8 (left), three structures 
are listed which have the same nominal mass (270 Da) but have in-
creasing RMD as the contribution of H to the exact mass increases. 

RMDa=
ma− (Aa)

ma

∗106

RMDM=

N
∑

a=1

naRMDa ∗10
6

RMDM=
m∕zM−m∕zMt

m∕zM
∗106
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Pinostrobin, the most unsaturated and oxidized molecule has the 
lowest %H and lowest RMD (330  ppm) and as the %H increases 
to estrone and then methyl palmitate, the RMD of each molecule 
increases (600  ppm and 948  ppm, respectively). This approach is 
useful when trying to discriminate flavonoid glycosides, such as the 
apigenin glycoside (Figure S8, right, RMD = 255 ppm) from saponins 
such as medicagenic acid glycoside (Figure S8, right, RMD = 494) in 
M. sativa extracts. However, other phytochemicals in these extracts 
may also have similar RMD, and this metric should not be solely re-
lied upon for annotation. Daughter ions may also differ in RMD from 
their parent ions due to fragmentation or loss of H to form cationic 
species. Other information, such as relative retention time, molec-
ular mass, and odd molecular masses indicating nitrogenous com-
pounds can also inform classification and annotation.

Definitions:
Atomic mass (m): exact mass of an atom measured in daltons (Da).
Mass number (A): the total number of nucleons (protons + neu-

trons) in an atom.

Mass to charge ratio (m/z): ion mass divided by charge. The 
measured unit of mass in a mass spectrometer. When z  =  1, m/z 
equals ion mass.

Nominal mass to charge raio (m/zt): mass to charge ratio trun-
cated to zero decimals (or floor function). For example, the nominal 
mass of m/z = 270.2559 is m/zt = 270.

High-Resolution Mass Spectrometry (HRMS): Mass spectromet-
ric techniques which yield masses accurate to four decimal places 
which allows for prediction of putative chemical formulae.

Isobaric: molecules having the same mass.
Molecular ion: Ionic species representing an intact molecule.
Parent ion: Molecular ion which becomes fragmented into daugh-

ter ions.
Daughter ions: Resultant ions from the fragmentation of parent 

ions.


