231 research outputs found

    Discrete moving breather collisions in a Klein-Gordon chain of oscillators

    Get PDF
    We study collision processes of moving breathers with the same frequency, traveling with opposite directions within a Klein-Gordon chain of oscillators. Two types of collisions have been analyzed: symmetric and non-symmetric, head-on collisions. For low enough frequency the outcome is strongly dependent of the dynamical states of the two colliding breathers just before the collision. For symmetric collisions, several results can be observed: breather generation, with the formation of a trapped breather and two new moving breathers; breather reflection; generation of two new moving breathers; and breather fusion bringing about a trapped breather. For non-symmetric collisions the possible results are: breather generation, with the formation of three new moving breathers; breather fusion, originating a new moving breather; breather trapping with also breather reflection; generation of two new moving breathers; and two new moving breathers traveling as a ligand state. Breather annihilation has never been observed.Comment: 19 pages, 12 figure

    Perturbation theory for localized solutions of sine-Gordon equation: decay of a breather and pinning by microresistor

    Full text link
    We develop a perturbation theory that describes bound states of solitons localized in a confined area. External forces and influence of inhomogeneities are taken into account as perturbations to exact solutions of the sine-Gordon equation. We have investigated two special cases of fluxon trapped by a microresistor and decay of a breather under dissipation. Also, we have carried out numerical simulations with dissipative sine-Gordon equation and made comparison with the McLaughlin-Scott theory. Significant distinction between the McLaughlin-Scott calculation for a breather decay and our numerical result indicates that the history dependence of the breather evolution can not be neglected even for small damping parameter

    Breather trapping and breather transmission in a DNA model with an interface

    Get PDF
    We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule. This is a DNA chain in which all the base pairs are identical and there exists an interface such that the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian of the Peyrard--Bishop model is augmented with a term that includes the dipole--dipole coupling between base pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic energy of a moving breather launched towards the interface is below a critical value, it is trapped in a region around the interface collecting vibrational energy. For an energy larger than the critical value, the breather is transmitted and continues travelling along the double strand with lower velocity. Reflection phenomena never occur. The same study has been carried out when a single dipole is oriented in opposite direction to the other ones. When moving breathers collide with the single inverted dipole, the same effects appear. These results emphasize the importance of this simple type of local inhomogeneity as it creates a mechanism for the trapping of energy. Finally, the simulations show that, under favorable conditions, several launched moving breathers can be trapped successively at the interface region producing an accumulation of vibrational energy. Moreover, an additional colliding moving breather can produce a saturation of energy and a moving breather with all the accumulated energy is transmitted to the chain.Comment: 15 pages, 11 figure

    Energy funneling in a bent chain of Morse oscillators with long-range coupling

    Get PDF
    A bent chain of coupled Morse oscillators with long-range dispersive interaction is considered. Moving localized excitations may be trapped in the bending region. Thus chain geometry acts like an impurity. An energy funneling effect is observed in the case of random initial conditions.Comment: 6 pages, 12 figures. Submitted to Physical Review E, Oct. 13, 200

    Stopping Light on a Defect

    Full text link
    Gap solitons are localized nonlinear coherent states which have been shown both theoretically and experimentally to propagate in periodic structures. Although theory allows for their propagation at any speed vv, 0vc0\le v\le c, they have been observed in experiments at speeds of approximately 50% of cc. It is of scientific and technological interest to trap gap solitons. We first introduce an explicit multiparameter family of periodic structures with localized defects, which support linear defect modes. These linear defect modes are shown to persist into the nonlinear regime, as {\it nonlinear defect modes}. Using mathematical analysis and numerical simulations we then investigate the capture of an incident gap soliton by these defects. The mechanism of capture of a gap soliton is resonant transfer of its energy to nonlinear defect modes. We introduce a useful bifurcation diagram from which information on the parameter regimes of gap soliton capture, reflection and transmission can be obtained by simple conservation of energy and resonant energy transfer principles.Comment: 45 pages, Submitted to Journal of the Optical Society

    Employment and Labor Law

    Get PDF

    Dark solitons in ferromagnetic chains with first- and second-neighbor interactions

    Full text link
    We study the ferromagnetic spin chain with both first- and second-neighbor interactions. We obtained the condition for the appearance and stability of bright and dark solitons for arbitrary wave number inside the Brillouin zone. The influence of the second-neighbor interaction and the anisotropy on the soliton properties is considered. The scattering of dark solitons from point defects in the discrete spin chain is investigated numerically.Comment: 7 pages,5 figure

    The Multi-Cultural Center of Sioux Falls, South Dakota: Providing Opportunities for All People to Learn, Celebrate, and Share Through Cultural Experiences

    Get PDF
    Sioux Falls, South Dakota, has experienced a major population growth of immigrant and refugee families. New arrivals must meet the everyday challenges of daily survival in a culture for which they are not prepared. A task force was established in 1995, and out of this grew the concept of a Multi-Cultural Center. As part of the National Children, Youth and Families At Risk (CYFAR) Initiative, which was funded by USDA CSREES, the South Dakota State University Cooperative Extension Service (SDSU CES) partnered with the Multi-Cultural Center to address various cultural hurdles. This partnership has led to the successful implementation of many services and programs
    corecore