22,941 research outputs found

    Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Get PDF
    Data from the Fabry-Perot Interferometers at KEOPS (Sweden), Sodankylä (Finland), and Svalbard (Norway), have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (5 h) detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data. This gives a clear indication of the direction of flow of the gravity waves, and corroborates that the source is the auroral oval. This is because the energy is dissipated through heating in each cycle of a wave, therefore, over a given distance, short period waves lose more energy than long and dissipate before they reach their target

    High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Get PDF
    Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers(FPIs) to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesospherelower thermosphere (MLT) dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere

    Responding to rape.

    Get PDF

    Twilight for the energy conditions?

    Full text link
    The tension, if not outright inconsistency, between quantum physics and general relativity is one of the great problems facing physics at the turn of the millennium. Most often, the problems arising in merging Einstein gravity and quantum physics are viewed as Planck scale issues (10^{19} GeV, 10^{-34} m, 10^{-45} s), and so safely beyond the reach of experiment. However, over the last few years it has become increasingly obvious that the difficulties are more widespread: There are already serious problems of deep and fundamental principle at the semi-classical level, and worse, certain classical systems (inspired by quantum physics, but in no sense quantum themselves) exhibit seriously pathological behaviour. One manifestation of these pathologies is in the so-called ``energy conditions'' of general relativity. Patching things up in the gravity sector opens gaping holes elsewhere; and some ``fixes'' are more radical than the problems they are supposed to cure.Comment: Honourable mention in the 2002 Gravity Research Foundation essay contest. 12 pages. Plain LaTeX 2

    Quantum Inequalities and Singular Energy Densities

    Full text link
    There has been much recent work on quantum inequalities to constrain negative energy. These are uncertainty principle-type restrictions on the magnitude and duration of negative energy densities or fluxes. We consider several examples of apparent failures of the quantum inequalities, which involve passage of an observer through regions where the negative energy density becomes singular. We argue that this type of situation requires one to formulate quantum inequalities using sampling functions with compact support. We discuss such inequalities, and argue that they remain valid even in the presence of singular energy densities.Comment: 18 pages, LaTex, 2 figures, uses eps

    Brownian Motion in Robertson-Walker Space-Times from electromagnetic Vacuum Fluctuations

    Full text link
    We consider classical particles coupled to the quantized electromagnetic field in the background of a spatially flat Robertson-Walker universe. We find that these particles typically undergo Brownian motion and acquire a non-zero mean squared velocity which depends upon the scale factor of the universe. This Brownian motion can be interpreted as due to non-cancellation of anti-correlated vacuum fluctuations in the time dependent background space-time. We consider several types of coupling to the electromagnetic field, including particles with net electric charge, a magnetic dipole moment, and electric polarizability. We also investigate several different model scale factors.Comment: 29 pages, 7 figure

    Abandoned Mine Waste Repositories: Site Selction, Design, and Cost

    Get PDF
    The Bureau of Land Management (BLM) is conducting priority cleanups of abandoned mine sites on public lands. Typically, these sites contain tailings piles, cyanide heaps, and rock dumps that historically were constructed in or near drainages and now are releasing pollutants into watersheds. In compliance with regulations, BLM selects the most environmentally suitable site for removing mining waste and placing it into repositories. Repositories have different design features, and the design selected should be based on site-specific conditions and the results of water balance models. A Geographic Information System (GIS) can be a useful tool for screening and selecting a repository site. Industry sources and construction data from existing repositories can be used to predict construction costs. BLM found that the key factor in predicting cost is the volume of wastes to be placed
    • …
    corecore