553 research outputs found

    Pest management for the home strawberry patch

    Get PDF
    Pest management for home strawberry growers. This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu.Minnesotans who grow strawberries at home may have to combat insect pests or diseases to produce a good crop. Previous pest control strategies seeking to eliminate all pests from a garden have been shown to be unsuccessful. Today's approach combines many management methods into an integrated whole, thus the name Integrated Pest Management (IPM). IPM practices have enabled growers to place an emphasis on non-chemical methods while using pesticides secondarily or as a supplement to these methods while still harvesting quality fruit. The philosophy of IPM is to seek a balance maximizing yield while reducing human and environmental risk. This follows a particular hierarchy that begins with the best practices in cultural management.USDA NCIP

    On the hierarchical classification of G Protein-Coupled Receptors

    Get PDF
    Motivation: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. Results: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases

    The role of positive selection in determining the molecular cause of species differences in disease

    Get PDF
    Related species, such as humans and chimpanzees, often experience the same disease with varying degrees of pathology, as seen in the cases of Alzheimer's disease, or differing symptomatology as in AIDS. Furthermore, certain diseases such as schizophrenia, epithelial cancers and autoimmune disorders are far more frequent in humans than in other species for reasons not associated with lifestyle. Genes that have undergone positive selection during species evolution are indicative of functional adaptations that drive species differences. Thus we investigate whether biomedical disease differences between species can be attributed to positively selected genes

    QRFP receptor in GtoPdb v.2023.1

    Get PDF
    The human gene encoding the QRFP receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the QRFP receptor [19]; QRFPR, formerly known as the Peptide P518 receptor), previously designated as an orphan GPCR receptor was identified in 2001 by Lee et al. from a hypothalamus cDNA library [17]. However, the reported cDNA (AF411117) is a chimera with bases 1-127 derived from chromosome 1 and bases 155-1368 derived from chromosome 4. When corrected, QRFPR (also referred to as SP9155 or AQ27) encodes a 431 amino acid protein that shares sequence similarities in the transmembrane spanning regions with other peptide receptors. These include neuropeptide FF2 (38%), neuropeptide Y2 (37%) and galanin Gal1 (35%) receptors. QRFP receptor was identified as a Gs-coupled GPCR [6, 14] that's activated by the endogenous peptides QRFP43 (43RFa) and QRFP26 (26RFa) [6, 14, 11]. However, Gq- and Gi/o-mediated signaling was also reported [11, 25]. Two naturally occurring mutations in the human QRFP receptor lead to distinct and opposite 26RFa-evoked signaling bias [20]

    Radiation Science Using Z-Pinch X-Rays

    Get PDF
    Present-day Z-pinch experiments generate 200 TW peak power, 5–10 ns duration x-ray bursts that provide new possibilities to advance radiation science. The experiments support both the underlying atomic and plasma physics, as well as inertial confinement fusion and astrophysics applications. A typical configuration consists of a sample located 1–10 cm away from the pinch, where it is heated to 10–100 eV temperatures by the pinch radiation. The spectrally-resolved sample-plasma absorption is measured by aiming x-ray spectrographs through the sample at the pinch. The pinch plasma thus both heats the sample and serves as a backlighter. Opacitymeasurements with this source are promising because of the large sample size, the relatively long radiation duration, and the possibility to measureopacities at temperatures above 100 eV. Initial opacity experiments are under way with CH-tamped NaBr foil samples. The Na serves as a thermometer and absorption spectra are recorded to determine the opacity of Br with a partially-filled M-shell. The large sample size and brightness of the Z pinch as a backlighter are also exploited in a novel method measuring re-emission from radiation-heated gold plasmas. The method uses a CH-tamped layered foil with Al+MgF2 facing the radiationsource. A gold backing layer that covers a portion of the foil absorbs radiation from the source and provides re-emission that further heats the Al+MgF2. The Al and Mg heating is measured using space-resolved Kα absorption spectroscopy and the difference between the two regions enables a determination of the gold re-emission. Measurements are also performed at lower densities where photoionization is expected to dominate over collisions. Absorption spectra have been obtained for both Ne-like Fe and He-like Ne, confirming production of the relevant charge states needed to benchmark atomic kinetics models. Refinement of the methods described here is in progress to address multiple issues for radiation science

    QRFP receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The human gene encoding the QRFP receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the QRFP receptor [16]; QRFPR, formerly known as the Peptide P518 receptor), previously designated as an orphan GPCR receptor was identified in 2001 by Lee et al. from a hypothalamus cDNA library [15]. However, the reported cDNA (AF411117) is a chimera with bases 1-127 derived from chromosome 1 and bases 155-1368 derived from chromosome 4. When corrected, QRFPR (also referred to as SP9155 or AQ27) encodes a 431 amino acid protein that shares sequence similarities in the transmembrane spanning regions with other peptide receptors. These include neuropeptide FF2 (38%), neuropeptide Y2 (37%) and galanin Gal1 (35%) receptors

    X-ray Astronomy in the Laboratory with a Miniature Compact Object Produced by Laser-Driven Implosion

    Full text link
    Laboratory spectroscopy of non-thermal equilibrium plasmas photoionized by intense radiation is a key to understanding compact objects, such as black holes, based on astronomical observations. This paper describes an experiment to study photoionizing plasmas in laboratory under well-defined and genuine conditions. Photoionized plasma is here generated using a 0.5-keV Planckian x-ray source created by means of a laser-driven implosion. The measured x-ray spectrum from the photoionized silicon plasma resembles those observed from the binary stars Cygnus X-3 and Vela X-1 with the Chandra x-ray satellite. This demonstrates that an extreme radiation field was produced in the laboratory, however, the theoretical interpretation of the laboratory spectrum significantly contradicts the generally accepted explanations in x-ray astronomy. This model experiment offers a novel test bed for validation and verification of computational codes used in x-ray astronomy.Comment: 5 pages, 4 figures are included. This is the original submitted version of the manuscript to be published in Nature Physic

    Ionization disequilibrium in K- and L-shell ions

    Get PDF
    Producción CientíficaTime-gated Sc K-shell and Ge L-shell spectra are presented from a range of characterized thermodynamic states spanning ion densities of 1e19-1e20cm-3 and plasma temperatures around 2000eV. For the higher densities studied and temperatures from 1000 to 3000 eV, the Sc and Ge x-ray emission spectra are consistent with steady-state calculations from the modern atomic kinetics model SCRAM. At the lower ion densities achieved through plasma expansion, however, the model calculations require a higher plasma temperature to reproduce the observed Ge spectrum. We attribute this to ionization disequilibrium of the Sc because the ionization time scales exceed the hydrodynamic timescale when the inferred temperatures diverge.This work has been supported by the Research Grant No. PID2019-108764RB-I00 from the Spanish Ministry of Science and Innovation

    Measurement of L-shell emission from mid-Z targets under non-LTE conditions using Transmission Grating Spectrometer and DANTE power diagnostics

    Get PDF
    Producción CientíficaIn this work, we present the measurement of L-band emission from buried Sc/V targets in experiments performed at the OMEGA laser facility. The goal of these experiments was to study non-local thermodynamic equilibrium plasmas and benchmark atomic physics codes. The L-band emission was measured simultaneously by the time resolved DANTE power diagnostic and the recently fielded time integrated Soreq-Transmission Grating Spectrometer (TGS) diagnostic. The TGS measurement was used to support the spectral reconstruction process needed for the unfolding of the DANTE data. The Soreq-TGS diagnostic allows for broadband spectral measurement in the 120 eV–2000 eV spectral band, covering L- and M-shell emission of mid- and high-Z elements, with spectral resolution λ/Δλ = 8–30 and accuracy better than 25%. The Soreq-TGS diagnostic is compatible with ten-inch-manipulator platforms and can be used for a wide variety of high energy density physics, laboratory astrophysics, and inertial confinement fusion experiments
    • …
    corecore