234 research outputs found

    A hybrid fuzzy-MADM based decision-making scheme for QoS aware handover

    Get PDF
    The fifth-generation communications system (5G) will commercialize at 2020 in order to satisfy the increasing demands on data rate and also to enable the internet of things (IoT). One of the most challenging issues in 5G communications network is to provide provisioning quality of service (QoS) while maintaining seamless mobility for user equipment (UE). This paper proposes a QoS-aware handover algorithm based on fuzzy-TOPSIS to trigger and achieve the optimal cell selection. The proposed algorithm integrates both advantages of fuzzy logic and technique for order preference by similarity to an ideal solution (TOPSIS). The weights value of network attributes is first calculated by Entropy and the fuzzy-TOPSIS algorithm are then applied to rank each access networks. This QoS-aware algorithm is able to achieve the optimal Mean Option Score (MOS) for UE by considering QoS related parameters such as network jitter and packet loss ratio. The simulation results indicate that the proposed algorithm can guarantee good QoS while maintaining number of handover at a low level

    Fronto-parietal subnetworks flexibility compensates for cognitive decline due to mental fatigue

    Get PDF
    Fronto‐parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting‐state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter‐ and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data‐driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre‐ to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter‐ or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control‐type fronto‐parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue

    Age, Sex, and Socio-Economic Status Affect the Incidence of Pediatric Spinal Cord Injury: An Eleven-Year National Cohort Study

    Get PDF
    Few studies focus on pediatric spinal cord injury (SCI) and there is little information regarding the cause, anatomic level, and high risk population of SCI in children. This study aims to investigate the incidence and risk factors of pediatric SCI.A nationwide cohort of 8.7 million children aged<18 years in an 11-year period was analyzed for causes, age at injury, anatomic sites, disability, and familial socio-economic factors. Incidence rates and Cox regression analysis were conducted.<0.05).In the pediatric population, the overall SCI incidence rate is 5.99 per 100,000 person-years, with traumatic cervical SCI accounting for the majority. The incidence rate increases abruptly in male teenagers. Gender, age, and socio-economic status are independent risk factors that should be considered

    Insights into the Genetic Architecture of Early Stage Age-Related Macular Degeneration: A Genome-Wide Association Study Meta-Analysis

    Get PDF
    10.1371/journal.pone.0053830PLoS ONE81

    The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones.

    Get PDF
    KEY POINTS: Tenascin-X (TNX) is an extracellular matrix glycoprotein with anti-adhesive properties in skin and joints. Here we report the novel finding that TNX is expressed in human and mouse gut tissue where it is exclusive to specific subpopulations of neurones. Our studies with TNX-deficient mice show impaired defecation and neural control of distal colonic motility that can be rescued with a 5-HT4 receptor agonist. However, colonic secretion is unchanged. They are also susceptible to internal rectal intussusception. Colonic afferent sensitivity is increased in TNX-deficient mice. Correspondingly, there is increased density of and sensitivity of putative nociceptive fibres in TNX-deficient mucosa. A group of TNX-deficient patients report symptoms highly consistent with those in the mouse model. These findings suggest TNX plays entirely different roles in gut to non-visceral tissues - firstly a role in enteric motor neurones and secondly a role influencing nociceptive sensory neurones Studying further the mechanisms by which TNX influences neuronal function will lead to new targets for future treatment. ABSTRACT: The extracellular matrix (ECM) is not only an integral structural molecule, but is also critical for a wide range of cellular functions. The glycoprotein tenascin-X (TNX) predominates in the ECM of tissues like skin and regulates tissue structure through anti-adhesive interactions with collagen. Monogenic TNX deficiency causes painful joint hypermobility and skin hyperelasticity, symptoms characteristic of hypermobility Ehlers Danlos syndrome (hEDS). hEDS patients also report consistently increased visceral pain and gastrointestinal (GI) dysfunction. We investigated whether there is a direct link between TNX deficiency and GI pain or motor dysfunction. We set out first to learn where TNX is expressed in human and mouse, then determine how GI function, specifically in the colon, is disordered in TNX-deficient mice and humans of either sex. In human and mouse tissue, TNX was predominantly associated with cholinergic colonic enteric neurones, which are involved in motor control. TNX was absent from extrinsic nociceptive peptidergic neurones. TNX-deficient mice had internal rectal prolapse and a loss of distal colonic contractility which could be rescued by prokinetic drug treatment. TNX-deficient patients reported increased sensory and motor GI symptoms including abdominal pain and constipation compared to controls. Despite absence of TNX from nociceptive colonic neurones, neuronal sprouting and hyper-responsiveness to colonic distension was observed in the TNX-deficient mice. We conclude that ECM molecules are not merely support structures but an integral part of the microenvironment particularly for specific populations of colonic motor neurones where TNX exerts functional influences

    Baseline characteristics of participants in the Pre-Diabetes Interventions and Continued Tracking to Ease-out Diabetes (Pre-DICTED) Program

    Get PDF
    OBJECTIVE: The Pre-Diabetes Interventions and Continued Tracking to Ease-out Diabetes (Pre-DICTED) Program is a diabetes prevention trial comparing the diabetes conversion rate at 3 years between the intervention group, which receives the incentivized lifestyle intervention program with stepwise addition of metformin, and the control group, which receives the standard of care. We describe the baseline characteristics and compare Pre-DICTED participants with other diabetes prevention trials cohort. RESEARCH DESIGN AND METHODS: Participants were aged between 21 and 64 years, overweight (body mass index (BMI) ≥23.0 kg/m2), and had pre-diabetes (impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT)). RESULTS: A total of 751 participants (53.1% women) were randomized. At baseline, mean (SD) age was 52.5 (8.5) years and mean BMI (SD) was 29.0 (4.6) kg/m2. Twenty-three per cent had both IFG and IGT, 63.9% had isolated IGT, and 13.3% had isolated IFG. Ethnic Asian Indian participants were more likely to report a family history of diabetes and had a higher waist circumference, compared with Chinese and Malay participants. Women were less likely than men to meet the physical activity recommendations (≥150 min of moderate-intensity physical activity per week), and dietary intake varied with both sex and ethnicity. Compared with other Asian diabetes prevention studies, the Pre-DICTED cohort had a higher mean age and BMI. CONCLUSION: The Pre-DICTED cohort represents subjects at high risk of diabetes conversion. The study will evaluate the effectiveness of a community-based incentivized lifestyle intervention program in an urban Asian context.Peer reviewe
    corecore