402 research outputs found

    Solar radiation pressure effects on very high-eccentric formation flying

    Get PDF
    A real alternative to Lagrange point very low perturbed orbits, for universe observation missions, is high eccentric Earth orbits. Combination of high eccentricity and very large semi-major axis leads to orbits with an important part of flight time far from Earth and its perturbations. Modeling this particular relative motion is the scoop of this paper. Main perturbation in HEO orbits are solar radiation pressure (SRP) and lunisolar effects, but formations are mainly affected by SRP effects. The modellization of its effects is done in two ways. First we introduce the SRP effects in the equations of the relative acceleration. Second, we obtain explicit analytical expressions of the temporal evolution of the relative motion. Resulting expressions enable very fast computations. These models are used to study HEO missions. We focus on two different problems: estimation of thrust for station keeping and evaluation of collision risk. We also consider the influence of the difference of ratio surface/mass between satellites

    Micro- and Nanotexturization of Liquid Silicone Rubber Surfaces by Injection Molding Using Hybrid Polymer Inlays

    Get PDF
    Micro- and nanotexturization of surfaces can give to the parts different advanced functionalities, such as superhydrophobicity, self-cleaning, or antibacterial capabilities. These advanced properties in combination with the biocompatibility of Liquid Silicone Rubber are an interesting approach for obtaining high-performance medical devices. The industrial production of surface textures in polymeric materials is through the replication technique, and the best option to attain a high production rate is injection molding. Moreover, its low viscosity during processing can provide an accurate replication capacity by the easy filling by capillarity of the microtextures. An innovative replicating technique for Liquid Silicone Rubber is presented by studying the replication of different shaped textures within a diameter range of between 2 and 50 mu m. The copying process consists in the overmolding of a textured polymeric inlay obtained by nanoimprint lithography. At the end of the process, a textured part is obtained, while the imprinted film remains in the mold. The injection molding parameters are optimized to increase the replication accuracy, and their effect on texture replicability is analyzed and discussed. Finally, it is shown that the textured surfaces improve their wettability behavior, which is a necessary and important characteristic in the development of biomedical devices

    Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas

    Get PDF
    As part the DTE2 campaign in the JET tokamak, we conducted a parameter scan in T and D-T complementing existing pulses in H and D. For the different main ion masses, type-I ELMy H-modes at fixed plasma current and magnetic field can have the pedestal pressure varying by a factor of 4 and the total pressure changing from βN=1.0 to 3.0. We investigated the pedestal and core isotope mass dependencies using this extensive data set. The pedestal shows a strong mass dependence on the density, which influences the core due to the strong coupling between both plasma regions. To better understand the causes for the observed isotope mass dependence in the pedestal, we analysed the interplay between heat and particle transport and the edge localised mode (ELM) stability. For this purpose, we developed a dynamic ELM cycle model with basic transport assumptions and a realistic neutral penetration. The temporal evolution and resulting ELM frequency introduce an additional experimental constraint that conventional quasi-stationary transport analysis cannot provide. Our model shows that a mass dependence in the ELM stability or in the transport alone cannot explain the observations. One requires a mass dependence in the ELM stability as well as one in the particle sources. The core confinement time increases with pedestal pressure for all isotope masses due to profile stiffness and electromagnetic turbulence stabilisation. Interestingly, T and D-T plasmas show an improved core confinement time compared to H and D plasmas even for matched pedestal pressures. For T, this improvement is largely due to the unique pedestal composition of higher densities and lower temperatures than H and D. With a reduced gyroBohm factor at lower temperatures, more turbulent drive in the form of steeper gradients is required to transport the same amount of heat. This picture is supported by quasilinear flux-driven modelling using TGLF-SAT2 within Astra. With the experimental boundary condition TGLF-SAT2 predicts the core profiles well for gyroBohm heat fluxes >15 , however, overestimates the heat and particle transport closer to the turbulent threshold

    Study of the neoclassical radial electric field of the TJ-II flexible heliac

    Full text link
    Calculations of the monoenergetic radial diffusion coefficients are presented for several configurations of the TJ-II stellarator usually explored in operation. The neoclassical radial fluxes and the ambipolar electric field for the standard configuration are then studied for three different collisionality regimes, obtaining precise results in all cases

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presented. ISSN:0029-5515 ISSN:1741-432

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F

    Publisher Correction: Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF

    Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF
    corecore