86 research outputs found

    The Y dwarf population with HST : unlocking the secrets of our coolest neighbours – I. Overview and first astrometric results

    Get PDF
    In this paper, we present our project that aims at determining accurate distances and proper motions for the Y brown dwarf population using the Hubble Space Telescope. We validate the program with our first results, using a single new epoch of observations of the Y0pec dwarf WISE J163940.83−684738.6. These new data allowed us to refine its proper motion and improve the accuracy of its parallax by a factor of three compared to previous determinations, now constrained to ϖ = 211.11 ± 0.56 mas. This newly derived absolute parallax corresponds to a distance of 4.737 ± 0.013 pc, an exquisite and unprecedented precision for faint ultracool Y dwarfs

    HST astrometry of the closest Brown Dwarfs -- II. Improved parameters and constraints on a third body

    Full text link
    Located at less than 2pc away, Luhman16AB (WISE.J104915.57-531906.1) is the closest pair of brown dwarfs and third closest `stellar' system to Earth. An exoplanet candidate in the Luhman16 binary system was reported in 2017 based on a weak astrometric signature in the analysis of 12 HST epochs. An additional epoch collected in 2018 and re-analysis of the data with more advanced methods further increased the significance level of the candidate, consistent with a Neptune-mass exoplanet orbiting one of the Luhman16 brown dwarf components. We report the joint analysis of these previous data together with two new astrometric HST epochs we obtained to confirm or disprove this astrometric signature. Our new analysis rules out presence of a planet orbiting one component of the Luhman16AB system for masses M > 1.5 M_Nep (Neptune masses) and periods between 400 and 5000 days. However, the presence of third bodies with masses M < 3 M_Nep and periods between 2 and 400 days (~1.1yrs) can not be excluded. Our measurements make significant improvements to the characterization of this sub-stellar binary, including its mass-ratio 0.8305+/-0.0006, individual component masses 35.4+/-0.2 M_Jup and 29.4+/-0.2 M_Jup (Jupiter masses), and parallax distance 1.9960pc +/- 50AU. Comparison of the masses and luminosities of Luhman16AB to several evolutionary models shows persistent discrepancies in the ages of the two components, but strengthens the case that this system is a member of the 510+/-95 Myr Oceanus Moving Group.Comment: 17 pages, 8+A1 figures. Accepted for publication on Astronomische Nachrichten on 10th January 2024 available https://onlinelibrary.wiley.com/doi/10.1002/asna.20230158 on-line supplementary material and animations https://web.oapd.inaf.it/bedin/files/PAPERs_eMATERIALs/Luh16AB_II

    Chemical stabilization of dentin extracellular matrix detected by FEISEM and EDS

    Get PDF
    Dentin collagen degradation represents an important limit to the stability of the resin-dentin interface in conservative dentistry. In vitro application of 1-ethyl-3-(3- dimethylaminopropyl)-carbodiimide hydrochloride (EDC), an imide-based zerolength cross-linking agent, showed [1] the capability to inactivate the endogenous dentin matrix metalloproteinases and to increase the mechanical properties of the organic dentin extracellular matrix. In the present study, a correlative high resolution SEM (FEISEM) with an Energy Dispersive Spectroscopy (EDS) analysis was performed to characterize the fine structure and the chemical modifications of EDCstabilized human dentin, after compressive mechanical stress (Chewing Simulation - CS). Demineralized human dentin disks were assigned to four groups: (1) artificial saliva at 37°C for 30 days; (2) pre-treatment with 0.5M EDC for 60 s, then as in Group 1; (3) CS challenge for 30 days; (4) 0.5M EDC as in Group 2 and CS challenge as in Group 3. The FEISEM analysis revealed that the EDC-pretreatment made the collagen fibrillar network more compact, in comparison to controls and this effect was particularly evident on the surface of not stressed samples. Along with the increased compactness of the collagen complex, the EDS analysis showed a significant semi-quantitative increase of sulfur. The presence of chlorine in EDC treated samples was also detectable. The increase of sulfur, not present in EDC composition, suggests a possible implication of sulfate glycosaminoglycans containing proteoglycans during the extracellular matrix stabilization, as also suggested by the concurrent increase of the amorphous matrix. The presence of chlorine in EDC treated samples induces to conclude that the activity of the cross-linking agent is stable even after the experimental time intervals

    Shadows and spirals in the protoplanetary disk HD 100453

    Get PDF
    Understanding the diversity of planets requires to study the morphology and the physical conditions in the protoplanetary disks in which they form. We observed and spatially resolved the disk around the ~10 Myr old protoplanetary disk HD 100453 in polarized scattered light with SPHERE/VLT at optical and near-infrared wavelengths, reaching an angular resolution of ~0.02", and an inner working angle of ~0.09". We detect polarized scattered light up to ~0.42" (~48 au) and detect a cavity, a rim with azimuthal brightness variations at an inclination of 38 degrees, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint spiral-like feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of ~119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by ~72 degrees. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim, induces an azimuthal variation of the scale height that can contribute to the brightness variations. Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. The origin of such a misalignment in HD 100453, and of the spirals, is unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit.Comment: A&A, accepte

    Post conjunction detection of β\beta Pictoris b with VLT/SPHERE

    Get PDF
    With an orbital distance comparable to that of Saturn in the solar system, \bpic b is the closest (semi-major axis \simeq\,9\,au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to \bpic have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters. We aimed at further constraining \bpic b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. We used SPHERE at the VLT to precisely monitor the orbital motion of beta \bpic b since first light of the instrument in 2014. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b on the northeast side of the disk at a separation of 139\,mas and a PA of 30^{\circ} in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a=9.0±0.5a = 9.0 \pm 0.5 au (1 σ\sigma ), it definitely excludes previously reported possible long orbital periods, and excludes \bpic b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.Comment: accepted by A&

    The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE

    Get PDF
    The SHINE project is a 500-star survey performed with SPHERE on the VLT for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. We adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a MCMC tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.09.7+13.5%23.0_{-9.7}^{+13.5}\%, 5.82.8+4.7%5.8_{-2.8}^{+4.7}\%, and 12.67.1+12.9%12.6_{-7.1}^{+12.9}\% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1-75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.72.8+3.8%5.7_{-2.8}^{+3.8}\%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.Comment: 24 pages, 14 figures, 3 tables. Accepted for publication in A&
    corecore