1,116 research outputs found

    The SCERTS System. An integrated approach for the emotional regulation of the student with Autism Spectrum Disorders

    Get PDF
    Deficits in the emotional regulation are commonly observed in the typical behavioral profile of Autism Spectrum Disorders. Such deficits are attributable to the disorientation caused by the inability of understanding the environmental instances. This paper describes the opportunities related to the implementation of the SCERTS System for the emotional regulation of children on Autism Spectrum

    Nitrogen Fractionation in External Galaxies

    Get PDF
    In star forming regions in our own Galaxy, the 14N/15N ratio is found to vary from \sim 100 in meteorites, comets and protoplanetary disks up to \sim 1000 in pre-stellar and star forming cores, while in external galaxies the very few single-dish large scale measurements of this ratio lead to values of 100-450. The extent of the contribution of isotopic fractionation to these variations is, to date, unknown. In this paper we present a theoretical chemical study of nitrogen fractionation in external galaxies in order to determine the physical conditions that may lead to a spread of the 14N/15N ratio from the solar value of \sim440 and hence evaluate the contribution of chemical reactions in the ISM to nitrogen fractionation. We find that the main cause of ISM enrichment of nitrogen fractionation is high gas densities, aided by high fluxes of cosmic rays.Comment: Accepted by MNRA

    Deuteration as an evolutionary tracer in massive-star formation

    Full text link
    Theory predicts, and observations confirm, that the column density ratio of a molecule containing D to its counterpart containing H can be used as an evolutionary tracer in the low-mass star formation process. Since it remains unclear if the high-mass star formation process is a scaled-up version of the low-mass one, we investigated whether the relation between deuteration and evolution can be applied to the high-mass regime. With the IRAM-30m telescope, we observed rotational transitions of N2D+ and N2H+ and derived the deuterated fraction in 27 cores within massive star-forming regions understood to represent different evolutionary stages of the massive-star formation process. Results. Our results clearly indicate that the abundance of N2D+ is higher at the pre-stellar/cluster stage, then drops during the formation of the protostellar object(s) as in the low-mass regime, remaining relatively constant during the ultra-compact HII region phase. The objects with the highest fractional abundance of N2D+ are starless cores with properties very similar to typical pre-stellar cores of lower mass. The abundance of N2D+ is lower in objects with higher gas temperatures as in the low-mass case but does not seem to depend on gas turbulence. Our results indicate that the N2D+-to-N2H+ column density ratio can be used as an evolutionary indicator in both low- and high-mass star formation, and that the physical conditions influencing the abundance of deuterated species likely evolve similarly during the processes that lead to the formation of both low- and high-mass stars.Comment: Accepted by A&AL, 4 pages, 2 figures, 2 appendices (one for Tables, one for additional figures

    GENETIC BIODIVERSITY OF THE EUROPEAN BARNACLE CHTHAMALUS MONTAGUI

    Get PDF
    Biodiversity ultimately is genetic diversity. Genetic diversity within species is eroded before negative trends in biodiversity become evident as loss of species or habitats. Hence, monitoring biodiversity at the genetic level may indicate what will happen at higher levels of organisation if the trend is allowed to continue. There is a pervasive belief that marine ecosystems are less vulnerable to biodiversity loss than terrestrial ones, due to marine species' high dispersal ability and connectivity, large geographic ranges, low genetic differentiation among populations and high genetic variation within populations. Many studies offer compelling evidence that it is not so: loss of genetic variation due to natural and anthropogenic factors has been detected even in marine species with potentially high dispersal. In this context the genetic pattern of the European barnacle Chthamalus montagui, a species with high dispersal capability, was investigated from three different perspectives using polymorphic microsatellite loci as molecular markers. The effect of structures created to protect coastal areas in the Adriatic Sea, was investigated to test the hypothesis that artificial substrates can act as "corridors" facilitating gene flow among previously isolated populations. The genetic pattern of central populations was compared to that of peripheral/marginal populations over the range of C. montagui in the UK, to test the hypothesis that marginal and peripheral populations tend to be less genetically variable than central ones. For both studies results were consistent with the formulated hypotheses at the 3 analysed loci. Finally, a broader survey of the NE Atlantic and Mediterranean range of this barnacle was carried out to assess spatial scales of genetic variation. A clear differentiation between Atlantic and Mediterranean samples was detected; however, the major source of genetic variation was within sites at a very small spatial scale. The information gained generates insights for marine genetic management and conservation planning.Marine Biological Association of the UK, Plymouth and ENEA - Marine Environment Research Centre S. Teresa, Ital

    Search for massive protostellar candidates in the southern hemisphere: I. Association with dense gas

    Full text link
    (Abridged) We have observed CS and C17O lines, and 1.2 mm cont. emission towards a sample of 130 high-mass protostellar candidates with DEC<-30 deg. This is the first step of the southern extension of a project started more than a decade ago aimed at the identification of massive protostellar candidates. We selected from the IRAS PSC 429 sources which potentially are compact molecular clouds. The sample is divided into two groups: the 298 sources with [25-12]>0.57 and [60-12]>1.30 we call 'High' sources, the remaining 131 we call 'Low' sources. In this paper, we check the association with dense gas and dust in 130 'Low' sources. We find a detection rate of ca. 85% in CS, demonstrating a tight association with dense molecular clumps. Among the sources detected in CS, ca. 76% have also been detected in C17O and ca. 93% in the 1.2 mm cont. Mm-cont. maps show the presence of clumps with diameters 0.2-2 pc and masses from a few Msun to 10^5 Msun; H2 volume densities lie between ca. 10^{4.5} and 10^{5.5} cm^{-3}. The L(bol) are 10^3-10^6 Lsun, consistent with embedded high-mass objects. Based on our results and those found in the literature for other samples, we conclude that our sources are massive objects probably in a stage prior to the formation of an HII region. We propose a scenario in which 'High' and 'Low' sources are both made of a massive clump hosting a high-mass protostellar candidate and a nearby stellar cluster. The difference might be due to the fact that the IRAS 12mu flux, the best discriminant between the two groups, is dominated by the emission from the cluster in 'Lows' and from the massive protostellar object in 'Highs'.Comment: Accepted for publication in Astron. & Astroph.; 34 pages (incl. 14 figures and 8 tables

    First measurements of 15N fractionation in N2H+ toward high-mass star forming cores

    Get PDF
    We report on the first measurements of the isotopic ratio 14N/15N in N2H+ toward a statistically significant sample of high-mass star forming cores. The sources belong to the three main evolutionary categories of the high-mass star formation process: high-mass starless cores, high-mass protostellar objects, and ultracompact HII regions. Simultaneous measurements of 14N/15N in CN have been made. The 14N/15N ratios derived from N2H+ show a large spread (from ~180 up to ~1300), while those derived from CN are in between the value measured in the terrestrial atmosphere (~270) and that of the proto-Solar nebula (~440) for the large majority of the sources within the errors. However, this different spread might be due to the fact that the sources detected in the N2H+ isotopologues are more than those detected in the CN ones. The 14N/15N ratio does not change significantly with the source evolutionary stage, which indicates that time seems to be irrelevant for the fractionation of nitrogen. We also find a possible anticorrelation between the 14N/15N (as derived from N2H+) and the H/D isotopic ratios. This suggests that 15N enrichment could not be linked to the parameters that cause D enrichment, in agreement with the prediction by recent chemical models. These models, however, are not able to reproduce the observed large spread in 14N/15N, pointing out that some important routes of nitrogen fractionation could be still missing in the models.Comment: 2 Figures, accepted for publication in ApJ

    La musicologia filosofica di Adorno

    Get PDF
    Questo elaborato è rivolto ad analizzare la musicologia filosofica di Adorno fondata su un assunto principale: la musica, attraverso le sue tensioni, esprime la società in quanto “totalità in sé agonistica”. Prendendo in considerazione la riflessione adorniana sui protagonisti della musica borghese, Beethoven, Wagner, Strawinsky, Schönberg, si vuol mettere in evidenza la difficoltà della “musica moderna” a sfuggire ai meccanismi del “mondo amministrato”

    Temperature and kinematics of protoclusters with intermediate and high-mass stars: the case of IRAS 05345+3157

    Full text link
    We have mapped at small spatial scales the temperature and the velocity field in the protocluster associated with IRAS 05345+3157, which contains both intermediate-/high-mass protostellar candidates and starless condensations, and is thus an excellent location to investigate the role of massive protostars on protocluster evolution. We observed the ammonia (1,1) and (2,2) inversion transitions with the VLA. Ammonia is the best thermometer for dense and cold gas, and the observed transitions have critical densities able to trace the kinematics of the intracluster gaseous medium. The ammonia emission is extended and distributed in two filamentary structures. The starless condensations are colder than the star-forming cores, but the gas temperature across the whole protocluster is higher (by a factor of ~1.3-1.5) than that measured typically in both infrared dark clouds and low-mass protoclusters. The non-thermal contribution to the observed line broadening is at least a factor of 2 larger than the expected thermal broadening even in starless condensations, contrary to the close-to-thermal line widths measured in low-mass quiescent dense cores. The NH3-to-N2H+ abundance ratio is greatly enhanced (a factor of 10) in the pre--stellar core candidates, probably due to freeze-out of most molecular species heavier than He. The more massive and evolved objects likely play a dominant role in the physical properties and kinematics of the protocluster. The high level of turbulence and the fact that the measured core masses are larger than the expected thermal Jeans masses indicate that turbulence likely was an important factor in the initial fragmentation of the parental clump.Comment: 13 pages (with Appendix), 11 figure
    corecore