9 research outputs found

    Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals

    Get PDF
    A non-destructive Raman spectroscopy has been widely used as a complimentary method to X-ray diffraction characterization of Cu2ZnSnS4 (CZTS) thin films, yet our knowledge of the Raman active fundamental modes in this material is far from complete. Focusing on polarized Raman spectroscopy provides important information about the relationship between Raman modes and CZTS crystal structure. In this framework the zone-center optical phonons of CZTS, which is most usually examined in active layers of the CZTS based solar cells, are studied by polarized resonant and non-resonant Raman spectroscopy in the range from 60 to 500 cm(-1) on an oriented single crystal. The phonon mode symmetry of 20 modes from the 27 possible vibrational modes of the kesterite structure is experimentally determined. From in-plane angular dependences of the phonon modes intensities Raman tensor elements are also derived. Whereas a strong intensity enhancement of the polar E and B symmetry modes is induced under resonance conditions, no mode intensity dependence on the incident and scattered light polarization configurations was found in these conditions. Finally, Lyddane-Sachs-Teller relations are applied to estimate the ratios of the static to high-frequency optic dielectric constants parallel and perpendicular to c-optical axis

    Wide band-gap tuning Cu2ZnSn1-xGexS4 single crystals: optical and vibrational properties

    Get PDF
    The linear optical properties of Cu2ZnSn1-xGexS4 high quality single crystals with a wide range of Ge contents (x = 0.1, 0.3, 0.5, 0.7, 0.9 and 1) have been investigated in the ultraviolet and near infrared range using spectroscopic ellipsometry measurements. From the analysis of the complex dielectric function spectra it has been found that the bandgap E0 increases continuously from 1.49 eV to 2.25 eV with the Ge content. Furthermore, the evolution of the interband transitions E1A and E1B has been also determined. Raman scattering using three different excitation wavelengths and its analysis have been performed to confirm the absence of secondary phases in the samples, and to distinguish between stannite, wurtzite, wurzstannite and kesterite structures. Additionally, the analysis of the high resolution Raman spectra obtained in samples with different [Ge]/([Ge]+[Sn]) ratios allows describing a bimodal behavior of the dominant A modes. The understanding of the incorporation of Ge into the Cu2ZnSnS4 lattice is fundamental in order to develop efficient bandgap engineering of these compounds towards the fabrication of kesterite based solar cells with enhanced performanc

    Multiwavelength excitation Raman scattering analysis of bulk and 2 dimensional MoS2: vibrational properties of atomically thin MoS2 layers

    Full text link
    In order to deepen the knowledge of the vibrational properties of two-dimensional (2D) MoS2 atomic layers, a complete and systematic Raman scattering analysis has been performed using both bulk single-crystal MoS2 samples and atomically thin MoS2 layers. Raman spectra have been measured under non-resonant and resonant conditions using seven different excitation wavelengths from near-infrared (NIR) to ultraviolet (UV). These measurements have allowed us to observe and identify 41 peaks, among which 22 have not been previously experimentally observed for this compound, and characterize the existence of different resonant excitation conditions for the different excitation wavelengths. This has also included the first analysis of resonant Raman spectra that are achieved using UV excitation conditions. In addition, the analysis of atomically thin MoS2 layers has corroborated the higher potential of UV resonant Raman scattering measurements for the non-destructive assessment of 2D MoS2 samples. Analysis of the relative integral intensity of the additional first- and second-order peaks measured under UV resonant excitation conditions is proposed for the non-destructive characterization of the thickness of the layers, complementing previous studies based on the changes of the peak frequencies

    Towards the growth of Cu2ZnSn1-xGexS4 thin films by a single-stage process : effect of substrate temperatura and composition

    Get PDF
    Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stag

    Caracterización por espectroscopia Raman de semiconductores Cu2ZnSnS4 para nuevas tecnologías fotovoltaicas

    Get PDF
    [spa] El trabajo se ha centrado en el análisis del compuesto Cu2ZnSnS4 (CZTS) mediante la técnica de espectroscopia de dispersión Raman, para una mayor optimización de los procesos de crecimiento de capas absorbedoras y la fabricación de celdas fotovoltaicas. Inicialmente, se da una visión del panorama actual del mercado de la energía fotovoltaica, con especial énfasis en destacar las diferentes tecnologías utilizadas en la fabricación de celdas solares. Dentro de estas tecnologías, el estudio se centra en el uso del compuesto CZTS, ya que se trata de un semiconductor con interesantes propiedades optoelectrónicas que está constituido por elementos muy abundantes en la corteza terrestre y de nula toxicidad, lo que lo convierte en un candidato especialmente adecuado para el desarrollo de tecnologías fotovoltaicas sostenibles y de producción a gran escala. Dado que la gran mayoría de experimentos presentados en este trabajo son de espectroscopia Raman, también hay una breve introducción a la teoría de dispersión inelástica de la luz y al efecto Raman en sí. También se describen las diferentes configuraciones experimentales llevadas a cabo durante la tesis, se muestra el equipamiento utilizado en los experimentos y se introduce el concepto de la espectroscopia Raman-Auger, presentando un primer experimento efectuado sobre una capa de CIGSe. En un intento de profundizar en el conocimiento de las propiedades vibracionales del Cu2ZnSnS4 como paso previo a la caracterización del compuesto, se ha recopilado la información disponible en las referencias bibliográficas actuales sobre la estructura cristalina del material y se ha realizado una serie de análisis de espectroscopia Raman: en primer lugar se ha analizado una capa de referencia de CZTS con diferentes configuraciones de polarización para establecer los modos de simetría, y posteriormente se ha procedido a la identificación de los picos Raman. Dicha identificación se ha realizado mediante diferentes longitudes de onda de excitación para activar de forma más o menos efectiva los distintos modos de vibración. Por último se han estudiado los efectos debidos al desorden y los defectos estructurales. Como consecuencia de la cantidad de elementos involucrados en el compuesto de CZTS y la complejidad de las reacciones de formación implicadas, es esperable la aparición de fases secundarias binarias de Cu/Zn/Sn-S y ternarias de Cu-Sn-S. Dada la gran relevancia que tienen dichas fases secundarias en las propiedades optoelectrónicas de los dispositivos, se ha desarrollado una metodología para su determinación, haciendo especial hincapié en la identificación de estas fases secundarias mediante la excitación selectiva en condiciones de pre-resonancia y argumentando el uso de la espectroscopia Raman por encima de otras técnicas de caracterización más comunes como la difracción de rayos X (XRD). Por último, se ha implementado todo lo estudiado anterior para una serie de capas de CZTS ricas en Zn de grado fotovoltaico, que han sido preparadas por sulfurización de stacks metálicos y analizadas mediante combinación de técnicas de XRD y espectroscopias Raman y Auger. A partir de los resultados obtenidos del análisis en profundidad de las capas para diferentes valores de tiempo y temperatura de recocido, se ha propuesto una reacción de formación del CZTS.[eng] The present work has been focused on the analysis of Cu2ZnSnS4 compound (CZTS) using Raman scattering spectroscopy, for further optimization of the processes and manufacturing absorber layers for solar cells. After a brief overview of the current market landscape in photovoltaics, the study focuses on the use of CZTS compound, an earth-abundant and non-toxic semiconductor. There is also a brief introduction to the theory of inelastic scattering of light and Raman effect, the description of the different experimental configurations performed during the thesis and the equipment used. A series of Raman spectroscopy analysis of Cu2ZnSnS4 compound have been performed: first, a reference CZTS layer has been analyzed with different polarization configurations to establish the symmetry modes, followed by Raman peak identification. Such identification was carried out by different excitation wavelengths to activate the different vibrational modes. Finally, it has been studied the effects due to disorder and structural defects. As a consequence of the number of elements involved in the CZTS compound and the complex forming reactions involved, it is expected the presence of secondary binary phases (Cu / Zn / Sn-S) and ternary Cu-Sn-S. Due to the high relevance that these secondary phases have in the optoelectronic properties of the devices, it has been developed a methodology for determining these phases, with particular emphasis on their identification by selective excitation in pre-resonance conditions. Finally, a series of Zn-rich CZTS photovoltaic grade layers have been implemented by sulfurization of metal stacks, and analyzed by XRD, Raman spectroscopy and Raman/Auger combined technique. The formation reaction of CZTS compound has been proposed from the results of the in-depth analysis of the layers for different values of annealing time and temperature

    Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals

    No full text
    A non-destructive Raman spectroscopy has been widely used as a complimentary method to X-ray diffraction characterization of Cu2ZnSnS4 (CZTS) thin films, yet our knowledge of the Raman active fundamental modes in this material is far from complete. Focusing on polarized Raman spectroscopy provides important information about the relationship between Raman modes and CZTS crystal structure. In this framework the zone-center optical phonons of CZTS, which is most usually examined in active layers of the CZTS based solar cells, are studied by polarized resonant and non-resonant Raman spectroscopy in the range from 60 to 500 cm(-1) on an oriented single crystal. The phonon mode symmetry of 20 modes from the 27 possible vibrational modes of the kesterite structure is experimentally determined. From in-plane angular dependences of the phonon modes intensities Raman tensor elements are also derived. Whereas a strong intensity enhancement of the polar E and B symmetry modes is induced under resonance conditions, no mode intensity dependence on the incident and scattered light polarization configurations was found in these conditions. Finally, Lyddane-Sachs-Teller relations are applied to estimate the ratios of the static to high-frequency optic dielectric constants parallel and perpendicular to c-optical axis

    Multiwavelength excitation Raman scattering analysis of bulk and 2 dimensional MoS2: vibrational properties of atomically thin MoS2 layers

    No full text
    In order to deepen the knowledge of the vibrational properties of two-dimensional (2D) MoS2 atomic layers, a complete and systematic Raman scattering analysis has been performed using both bulk single-crystal MoS2 samples and atomically thin MoS2 layers. Raman spectra have been measured under non-resonant and resonant conditions using seven different excitation wavelengths from near-infrared (NIR) to ultraviolet (UV). These measurements have allowed us to observe and identify 41 peaks, among which 22 have not been previously experimentally observed for this compound, and characterize the existence of different resonant excitation conditions for the different excitation wavelengths. This has also included the first analysis of resonant Raman spectra that are achieved using UV excitation conditions. In addition, the analysis of atomically thin MoS2 layers has corroborated the higher potential of UV resonant Raman scattering measurements for the non-destructive assessment of 2D MoS2 samples. Analysis of the relative integral intensity of the additional first- and second-order peaks measured under UV resonant excitation conditions is proposed for the non-destructive characterization of the thickness of the layers, complementing previous studies based on the changes of the peak frequencies

    Towards the growth of Cu2ZnSn1-xGexS4 thin films by a single-stage process : effect of substrate temperatura and composition

    No full text
    Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stag
    corecore