19 research outputs found

    Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011

    Get PDF
    The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of SĂŁo Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 ÎŒg m−2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 ÎŒg m−2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 ÎŒg m−3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 \textpm 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass

    Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods

    Get PDF
    Mass deposition fluxes of mineral dust to the tropical northeast Atlantic Ocean were determined within this study. In the framework of SOPRAN (Surface Ocean Processes in the Anthropocene), the interaction between the atmosphere and the ocean in terms of material exchange were investigated at the Cape Verde atmospheric observatory (CVAO) on the island Sao Vicente for January 2009. Five different methods were applied to estimate the deposition flux, using different meteorological and physical measurements, remote sensing, and regional dust transport simulations. The set of observations comprises micrometeorological measurements with an ultra-sonic anemometer and profile measurements using 2-D anemometers at two different heights, and microphysical measurements of the size-resolved mass concentrations of mineral dust. In addition, the total mass concentration of mineral dust was derived from absorption photometer observations and passive sampling. The regional dust model COSMO-MUSCAT was used for simulations of dust emission and transport, including dry and wet deposition processes. This model was used as it describes the AOD's and mass concentrations realistic compared to the measurements and because it was run for the time period of the measurements. The four observation-based methods yield a monthly average deposition flux of mineral dust of 12–29 ng m−2 s−1. The simulation results come close to the upper range of the measurements with an average value of 47 ng m−2 s−1. It is shown that the mass deposition flux of mineral dust obtained by the combination of micrometeorological (ultra-sonic anemometer) and microphysical measurements (particle mass size distribution of mineral dust) is difficult to compare to modeled mass deposition fluxes when the mineral dust is inhomogeneously distributed over the investigated area

    Factors Influencing the Formation of Nitrous Acid from Photolysis of Particulate Nitrate

    Get PDF
    Enhanced photolysis of particulate nitrate (pNO3) to form photolabile species, such as gas-phase nitrous acid (HONO), has been proposed as a potential mechanism to recycle nitrogen oxides (NOx) in the remote boundary layer (“renoxification”). This article presents a series of laboratory experiments aimed at investigating the parameters that control the photolysis of pNO3 and the efficiency of HONO production. Filters on which artificial or ambient particles had been sampled were exposed to the light of a solar simulator, and the formation of HONO was monitored under controlled laboratory conditions. The results indicate that the photolysis of pNO3 is enhanced, compared to the photolysis of gas-phase HNO3, at low pNO3 levels, with the enhancement factor reducing at higher pNO3 levels. The presence of cations (Na+) and halides (Cl–) and photosensitive organic compounds (imidazole) also enhance pNO3 photolysis, but other organic compounds such as oxalate and succinic acid have the opposite effect. The precise role of humidity in pNO3 photolysis remains unclear. While the efficiency of photolysis is enhanced in deliquescent particles compared to dry particles, some of the experimental results suggest that this may not be the case for supersaturated particles. These experiments suggest that both the composition and the humidity of particles control the enhancement of particulate nitrate photolysis, potentially explaining the variability in results among previous laboratory and field studies. HONO observations in the remote marine boundary layer can be explained by a simple box-model that includes the photolysis of pNO3, in line with the results presented here, although more experimental work is needed in order to derive a comprehensive parametrization of this process

    Factors Influencing the Formation of Nitrous Acid from Photolysis of Particulate Nitrate

    Get PDF
    Enhanced photolysis of particulate nitrate (pNO3) to form photolabile species, such as gas-phase nitrous acid (HONO), has been proposed as a potential mechanism to recycle nitrogen oxides (NOx) in the remote boundary layer (“renoxification”). This article presents a series of laboratory experiments aimed at investigating the parameters that control the photolysis of pNO3 and the efficiency of HONO production. Filters on which artificial or ambient particles had been sampled were exposed to the light of a solar simulator, and the formation of HONO was monitored under controlled laboratory conditions. The results indicate that the photolysis of pNO3 is enhanced, compared to the photolysis of gas-phase HNO3, at low pNO3 levels, with the enhancement factor reducing at higher pNO3 levels. The presence of cations (Na+) and halides (Cl-) and photosensitive organic compounds (imidazole) also enhance pNO3 photolysis, but other organic compounds such as oxalate and succinic acid have the opposite effect. The precise role of humidity in pNO3 photolysis remains unclear. While the efficiency of photolysis is enhanced in deliquescent particles compared to dry particles, some of the experimental results suggest that this may not be the case for supersaturated particles. These experiments suggest that both the composition and the humidity of particles control the enhancement of particulate nitrate photolysis, potentially explaining the variability in results among previous laboratory and field studies. HONO observations in the remote marine boundary layer can be explained by a simple box-model that includes the photolysis of pNO3, in line with the results presented here, although more experimental work is needed in order to derive a comprehensive parametrization of this process

    Extensive field evidence for the release of HONO from the photolysis of nitrate aerosols

    Get PDF
    Particulate nitrate ([Formula: see text]) has long been considered a permanent sink for NO(x) (NO and NO(2)), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NO(x) back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in “renoxification” photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text] , thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies. Active release of HONO from aerosol has important implications for atmospheric oxidants such as OH and O(3) in both polluted and clean environments

    Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory

    Full text link

    Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde Islands

    Get PDF
    Size-resolved trace metal concentrations of 15 elements in aerosol particles at the Cape Verde Atmospheric Observatory (CVAO) under remote background conditions were investigated through analysis of aerosol samples collected during intensive field studies from January 2007 to November 2011 using total reflection x-ray fluorescence (TXRF). The identification of the main air mass origin that influence remote marine aerosol in the northern tropical Atlantic has been investigated. In total, 317 samples were collected. The dataset was analyzed according to the main air mass inflow at the station. We found that remote conditions make up about 45% of the meteorological conditions in a year at CVAO and thus the northern tropical Atlantic. Surprisingly, air masses from North America are often responsible for higher trace metal concentrations in this region. Elements such as Zn, Pb, Cu, Cr, Ni, and V were mostly found in the submicron size fractions, while elements with dominant crustal or oceanic origin such as Fe, Ti, Mn, Sr, and Rb were found in the coarse fractions (>1 ÎŒm). The highest metal concentrations, especially for Zn (3.23 ng m−3), Cu (0.81 ng m−3), Sr (2.63 ng m−3), and Cr (0.53 ng m−3), were observed in air masses originating from North America and the concentrations were within the same concentration range to those reported previously in the literature for remote marine aerosols. Fe (12.26 ng m−3), Ti (0.91 ng m−3), and Mn (0.35 ng m−3) showed higher concentrations when air mass came from Europe and the Canary Islands. Pb concentration was low (−3) and did not vary significantly with air mass direction. The low Pb concentration is indicative of the complete phase-out of leaded gasoline even in African countries. Crustal enrichment factor values decreased from fine to coarse-mode particles with low values (20) for Zn, Cu, Ni, Cr, Pb, and Se. The observed enrichment of the elements was attributed to crustal, marine, anthropogenic, and biogenic sources, as well as long-range transport and resuspension. Zn, Cu and Pb were indicators of anthropogenic activities, while Ti and Sr were indicators of crustal and marine origin, respectively. Oceanic and biogenic emissions might have contributed to most of the Se observed. This work provides the first long-term size-resolved trace metals study for remote tropical northern Atlantic marine aerosols and the dataset could serve as good initiation of yearly flux estimates

    Evaluation of modelled LOTOS-EUROS with observational based PM10 source attribution

    Get PDF
    Due to its serious health impact particulate matter is one of the air pollutants subject to abatement policies. Information on the main sources responsible for high concentrations of pollutants is therefore crucial to enable effective policy measures. In this study we compared two different methods for attribution of particulate matter concentrations to different sources: A tagging approach within the regional chemistry transport model LOTOS-EUROS and an observational method using speciated particulate matter observations and Positive Matrix Factorisation (PMF). The methods have been applied for winter 2016/2017 over Eastern Germany where in wintertime high woodburning emissions, cold temperatures and regular easterly winds can lead to a build-up of pollutant concentrations. The comparison allows the validation of the modelled source attribution for a selection of source categories. The contributions for biomass and total combustion compare well between both methods providing trust in the determined contributions, applied emissions including their timing. The total contribution from combustion is estimated between 3.3-7.7 ÎŒg/m3 (PMF) and 3.3-7.2 ÎŒg/m3 (LOTOS-EUROS) for the 9 stations incorporated in the study. The temporal Pearson correlation coefficient ranges between 0.3-0.64 for total combustion and 0.34 and 0.7 for biomass combustion. The mean absolute contributions for traffic at background stations also compare well with most values between 1.5-2.0 ÎŒg/m3 for PMF and 1–1.6 ÎŒg/m3 for LOTOS-EUROS. A lack of correlation for this contribution however suggests that the model has difficulty in representing the source category traffic in a time consistent manner and developments are needed to improve the temporal distribution of the traffic emissions within the model. The modelled particulate matter concentrations displayed a 20–40% underestimation of the observed concentrations with an increasing bias during high pollution events. The underestimation showed a high correlation with the observed contribution from combustion and secondary particulate matter including ammonium sulfate and organic carbon suggesting that at least a part of the missing mass in LOTOS-EUROS is related to transformation of volatile combustion emissions, likely from solid fuels, to secondary particle mass and missing enhanced formation of sulfate. Implementation of these missing processes would help to improve the source attribution of particulate matter with the LOTOS-EUROS model

    Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean

    No full text
    In order to assess the impact of mineral dust on climate and biogeochemistry, it is paramount to identify the sources of dust emission. In this regard, radiogenic isotopes have recently been used successfully for tracing North African dust provenance and its transport across the tropical Atlantic to the Caribbean. Here we present two time series of radiogenic isotopes (Pb, Sr and Nd) in dusts collected at the Cape Verde Islands and Barbados in order to determine the origin of the dust and examine the seasonality of westerly dust outflow from Northern Africa. Aerosol samples were collected daily during two campaigns – February 2012 (winter) and June–July 2013 (summer) – at the Cape Verde Atmospheric Observatory (CVAO) on the island of SĂŁo Vicente (16.9°N, 24.9°W). A one-year-long time series of aerosols from Barbados (13.16°N, 59.43°W) – a receptor region in the Caribbean – was sampled at a lower, monthly resolution. Our results resolve a seasonal isotopic signal at Cape Verde shown by daily variations, with a larger radiogenic isotope variability in winter compared to that in summer. This summer signature is also observed over Barbados, indicating similar dust provenance at both locations, despite different sampling years. This constrains the isotope fingerprint of Saharan Air Layer (SAL) dust that is well-mixed during its transport. This result provides unequivocal evidence for a permanent, albeit of variable strength, long-range transport of African dust to the Caribbean and is in full agreement with atmospheric models of North African dust emission and transport across the tropical Atlantic in the SAL. The seasonal isotopic variability is related to changes in the dust source areas – mainly the Sahara and Sahel regions – that are active all-year-round, albeit with variable contributions in summer versus the winter months. Our results provide little support for much dust contributed from the BodĂ©lĂ© Depression in Chad – the “dustiest” place on Earth – reaching Cape Verde and Barbados during the summer, while contributions during the winter months are likely patchy and minor at most. Importantly, a short-term isotopic excursion is resolved in the Cape Verde winter record during a dust outbreak on 06–08 February 2012. This features a highly radiogenic Pb and Sr and unradiogenic Nd signature, marking a clear shift in dust provenance relative to that of normal days. As the dust storm waned, continuous gradual changes are observed, reflecting mixing and progressive dilution with dust typical of normal days. These inferences from radiogenic isotope tracers are corroborated by both satellite images (CALIPSO and MODIS) and back-trajectory analyses. The radiogenic isotope fingerprinting of these presently-active North African dust sources, and especially the Saharan Air Layer, will prove invaluable in studies of past dust emission from Northern Africa, where imagery and back trajectory analysis are unavailable
    corecore