51 research outputs found

    Outcomes and treatment strategies for autoimmunity and hyperinflammation in patients with RAG deficiency

    Get PDF
    BACKGROUND: While autoimmunity and hyperinflammation secondary to recombinase activating gene (RAG) deficiency have been associated with delayed diagnosis and even death, our current understanding is limited primarily to small case series. OBJECTIVE: Understand the frequency, severity, and treatment responsiveness of autoimmunity and hyperinflammation in RAG deficiency. METHODS: In reviewing the literature and our own database, we identified 85 patients with RAG deficiency, reported between 2001 and 2016, and compiled the largest case series to date of 63 patients with prominent autoimmune and/or hyperinflammatory pathology. RESULTS: Diagnosis of RAG deficiency was delayed a median of 5 years from the first clinical signs of immune dysregulation. The majority of patients (55.6%) presented with more than one autoimmune or hyperinflammatory complication, with the most common etiologies being cytopenias (84.1%), granulomas (23.8%), and inflammatory skin disorders (19.0%). Infections, including live viral vaccinations, closely preceded the onset of autoimmunity in 28.6% of cases. Autoimmune cytopenias had early onset (median 1.9, 2.1, and 2.6 years for autoimmune hemolytic anemia (AIHA), immune thrombocytopenia (ITP) and autoimmune neutropenia (AN), respectively) and were refractory to intravenous immunoglobulin, steroids, and rituximab in the majority of cases (64.7%, 73.7%, and 71.4% for AIHA, ITP, and AN, respectively). Evans syndrome specifically was associated with lack of response to first-line therapy. Treatment-refractory autoimmunity/hyperinflammation prompted hematopoietic stem cell transplantation in 20 patients. CONCLUSIONS: Autoimmunity/hyperinflammation can be a presenting sign of RAG deficiency and should prompt further evaluation. Multi-lineage cytopenias are often refractory to immunosuppressive treatment and may require hematopoietic cell transplantation for definitive management

    Induction of neoantigen-reactive T cells from healthy donors

    No full text
    The identification of immunogenic neoantigens and their cognate T cells represents the most crucial and rate-limiting steps in the development of personalized cancer immunotherapies that are based on vaccination or on infusion of T cell receptor (TCR)-engineered T cells. Recent advances in deep-sequencing technologies and in silico prediction algorithms have allowed rapid identification of candidate neoepitopes. However, large-scale validation of putative neoepitopes and the isolation of reactive T cells are challenging because of the limited availablity of patient material and the low frequencies of neoepitope-specific T cells. Here we describe a standardized protocol for the induction of neoepitope-reactive T cells from healthy donor T cell repertoires, unaffected by the potentially immunosuppressive environment of the tumor-bearing host. Monocyte-derived dendritic cells (DCs) transfected with mRNA encoding candidate neoepitopes are used to prime autologous naive CD8+ T cells. Antigen-specific T cells that recognize endogenously processed and presented epitopes are detected using peptide-MHC (pMHC) multimers. Single multimer-positive T cells are sorted for the identification of TCR sequences, after an optional step that includes clonal expansion and functional characterization. The time required to identify neoepitope-specific T cells is 15 d, with an additional 2-4 weeks required for clonal expansion and downstream functional characterization. Identified neoepitopes and corresponding TCRs provide candidates for use in vaccination and TCR-based cancer immunotherapies, and datasets generated by this technology should be useful for improving algorithms to predict immunogenic neoantigens

    Magnetic Nanoparticles for Diagnosis and Medical Therapy

    No full text
    Magnetic nanoparticles (MNPs) reveal promising opportunities for biomedical applications, potentially allowing minimally invasive diagnosis and therapeutic usage at several levels of human body organization (cells, tissue and organs). An increasingly broad collection of MNPs has been recently developed not only at the research level but also in some specific cases for medical applications. Superparamagnetic iron oxide (SPIO) nanoparticles are commonly used in clinical practice as contrast agents for magnetic resonance imaging (MRI) of liver and angiography. Carbon nanotubes (CNTs) are another type of nanomaterials with great potential for biomedical applications. Filled with ferromagnetic materials, an ensemble of aligned CNTs displays a highly non-linear, anisotropic and hysteretic magnetization behaviour due to their extremely high aspect ratio (length/diameter >100). The intrinsic properties of such ferromagnetic nanoparticles can potentially improve diagnosis and therapy of numerous diseases. Combining tailored biocompatible ferromagnetic nanomaterials with dedicated detection technology can provide a new approach leading to the exciting perspective of accurate medical imaging and medical therapy (magnetic hyperthermia, targeted drug delivery, etc.) at the cellular level. Elongated Fe-filled CNTs (Fe-CNTs) are foreseen as potential nanotools leading to minimally invasive, highly sensitive, and cost effective novel investigation routes for complete human body systems

    Outcomes and Treatment Strategies for Autoimmunity and Hyperinflammation in Patients with RAG Deficiency

    Get PDF
    Abstract Background: While autoimmunity and hyperinflammation secondary to recombinase activating gene (RAG) deficiency have been associated with delayed diagnosis and even death, our current understanding is limited primarily to small case series. Objective: Understand the frequency, severity, and treatment responsiveness of autoimmunity and hyperinflammation in RAG deficiency. Methods: In reviewing the literature and our own database, we identified 85 patients with RAG deficiency, reported between 2001 and 2016, and compiled the largest case series to date of 63 patients with prominent autoimmune and/or hyperinflammatory pathology. Results: Diagnosis of RAG deficiency was delayed a median of 5 years from the first clinical signs of immune dysregulation. The majority of patients (55.6%) presented with more than one autoimmune or hyperinflammatory complication, with the most common etiologies being cytopenias (84.1%), granulomas (23.8%), and inflammatory skin disorders (19.0%). Infections, including live viral vaccinations, closely preceded the onset of autoimmunity in 28.6% of cases. Autoimmune cytopenias had early onset (median 1.9, 2.1, and 2.6 years for autoimmune hemolytic anemia (AIHA), immune thrombocytopenia (ITP) and autoimmune neutropenia (AN), respectively) and were refractory to intravenous immunoglobulin, steroids, and rituximab in the majority of cases (64.7%, 73.7%, and 71.4% for AIHA, ITP, and AN, respectively). Evans syndrome specifically was associated with lack of response to first-line therapy. Treatment- refractory autoimmunity/hyperinflammation prompted hematopoietic stem cell transplantation in 20 patients. Conclusions: Autoimmunity/hyperinflammation can be a presenting sign of RAG deficiency and should prompt further evaluation. Multi-lineage cytopenias are often refractory to immunosuppressive treatment and may require hematopoietic cell transplantation for definitive management
    corecore