135 research outputs found

    Nonlinear Time-Domain Structure/Aerodynamics Coupling in Systems with Concentrated Structural Nonlinearities

    Get PDF
    This paper details a practical approach for predicting the aeroelastic response (structure/aerodynamics coupling) of flexible pod/missile-type configurations with freeplay/hysteresis concentrated structural nonlinearities. The nonlinear aeroelastic response of systems in the presence of these nonlinearities has been previously studied by different authors; this paper compiles methodologies and related airworthiness regulations. The aeroelastic equations of the pod/missile configuration are formulated in state-space form and time-domain integrated with Fortran/Matlab codes developed ad hoc for dealing with freeplay/hysteresis nonlinearities. Results show that structural nonlinearities change the classical aeroelastic behaviour with appearence of non-damped motion (LCOs and chaotic motion)

    Modelo de informe de análisis cinemático en una carrera de 110m vallas

    Get PDF
    El objetivo de este estudio es mostrar un tipo de informe técnico - biomecánico con una metodología sencilla, para analizar la técnica individual de un corredor de 110 m vallas (extensible a otras especialidades atléticas). Este informe esta orientado al entrenador, y pretendemos que en él, se destaquen los aspectos más importantes de cada actuación. Los resultados del informe, se muestran en forma de fotoseriación de los eventos más importantes, y en tablas donde se pueden ver los tiempos de apoyo, los tiempos de vuelo, las longitudes de ataque, y de aterrizaje, y las velocidades medias entre zancadas, entre vallas

    Relación entre la fuerza y la electromiografía (EMG) del vasto interno del cuádriceps, en movimientos de media sentadilla con carga

    Get PDF
    El objetivo del presente trabajo es analizar la relación existente entre la señal electromiográfica (EMG) del vasto interno del cuadriceps y los registros de fuerza vertical en una plataforma de fuerzas, durante un movimiento repetitivo y continuo de media sentadilla, con una carga del peso corporal (PC). Para cuantificar dicha relación se ha estimado el coeficiente de correlación bivariada de Pearson con el software SPSS v.11 tanto en la totalidad del movimiento, como por separado en fases excéntricas y concéntricas. Los resultados muestran una buena correlación lineal media de 0,818±0,125 para el movimiento global, y 0,813±0,143 para la media del excéntrico y 0,823±0,108 para la del concéntrico. Dichos resultados están de acuerdo con algunos estudios que muestran una relación lineal y en desacuerdo con otros que muestran una relación no lineal (más compleja). Faltan estudios con movimientos repetitivos y continuos, que son los más habituales en el entrenamiento deportivo

    Aeroelastic characteristics of slender wing/bodies with freeplay non-linearities

    Get PDF
    This article presents a time domain approach to the flutter analysis of a missile-type wing/body configuration with concentrated structural non-linearities. The missile wing is considered fully movable and its rotation angle contains the structural freeplay-type non-linearity. Although a general formulation for flexible configurations is developed, only two rigid degrees of freedom are taken into account for the results: pitching of the whole wing/body configuration and wing rotation angle around its hinge. An unsteady aerodynamic model based on the slender-body approach is used to calculate aerodynamic generalized forces. Limit-cycle oscillations and chaotic motion below the flutter speed are observed in this study

    Induced Damping on Vibrating Circular Plates Submerged in still Fluid

    Full text link
    When a structure vibrates immersed in a fluid it is known that the dynamic properties of the system are modified. The surrounding fluid will, in general, contribute to the inertia, the rigidity and the damping coefficient of the coupled fluid-structure system. For light structures, like spacecraft antennas, even when the fluid is air the contribution to the dynamic properties can be important. For not so light structures the ratio of the equivalent fluid/structure mass and rigidity can be very small and the fluid contribution could be neglected. For the ratio of equivalent fluid/structure damping both terms are of the same order and therefore the fluid contribution must be studied. The working life of the spacecraft structure would be on space and so without any surrounding fluid. The response of a spacecraft structure on its operational life would be attenuated by the structural damping alone but when the structure is dynamically tested on the earth the dynamic modal test is performed with the fluid surrounding it. The results thus are contaminated by the effects of the fluid. If the damping added by the fluid is of the same order as the structural damping the response of the structure in space can be quite different to the response predicted on earth. It is therefore desirable to have a method able to determine the amount of damping induced by the fluid and that should be subtracted of the total damping measured on the modal vibration test. In this work, a method for the determination of the effect of the surrounding fluid on the dynamic characteristics of a circular plate has been developed. The plate is assumed to vibrate harmonically with the vacuum modes and the generalized forces matrix due to the fluid is thus computed. For a compressible fluid this matrix is formed by complex numbers including terms of inertia, rigidity and damping. The matrix due to the fluid loading is determined by a boundary element method (BEM). The BEM used is of circular rings on the plate surface so the number of elements to obtain an accurate result is very low. The natural frequencies of the system are computed by an iteration procedure one by one and also the damping fluid contribution. Comparisons of the present method with various experimental data and other theories show the efficiency and accuracy of the method for any support condition of the plate

    Influence of a liquid on the natural frequencies of almost circular plates

    Get PDF
    In this work, the influence of the surrounding fluid on the dynamic characteristics of almost circular plates is investigated. First the natural frequencies and normal modes for the plates in vacuum are calculated by a perturbation procedure. The method is applied for the case of elliptical plates with a low value of eccentricity. The results are compared with other available methods for this type of plates with good agreement. Next, the effect of the fluid is considered. The normal modes of the plate in vacuum are used as a base to express the vibration mode of the coupled plate-fluid system. By applying the Hankel transformation the nondimensional added virtual mass 2 increment (NAVMI) are calculated for elliptical plates. Results of the NAVMI factors and the effect of the fluid on the natural frequencies are given and it is shown that when the eccentricity of the plate is reduced to zero (circular plate) the known results of the natural frequencies for circular plates surrounded by liquid are recovered

    Memoria de prácticas profesionales en Editorial Médica Panamericana

    Get PDF
    Treball Final de Màster Universitari en Traducció Medicosanitària. Codi: SBA031. Curs: 2020/2021La finalidad del presente trabajo es servir como memoria de las prácticas profesionales realizadas en Editorial Médica Panamericana y se enmarca en del itinerario profesional del Máster de Traducción Médico-sanitaria de la Universidad Jaume I (UJI) 2020-2021. Su contenido se divide en distintos apartados: en primer lugar, la introducción, donde se sintetizan los contenidos del encargo y se ubican temáticamente, se analiza el género de los textos de partida y de llegada, y se describen la situación comunicativa meta y las características del encargo. A continuación, se presentan el texto de partida y de llegada enfrentados en una tabla, con el objetivo de facilitar su lectura y corrección. El tercer apartado es el comentario, donde se describe la metodología de trabajo, los principales problemas de traducción y las soluciones adoptadas, y se evalúan los recursos documentales. Posteriormente se incluye un glosario terminológico con definiciones y equivalentes en español. A ese apartado le siguen una breve descripción de los textos paralelos y los recursos y herramientas utilizados y, por último, las conclusiones y la bibliografía

    A Teaching Experience: Aeroelasticity and the Finite Element Method

    Full text link
    [EN] The aeroelastic modelling of aircraft structures is a fundamental area for the students of Aerospace Engineering Degree. This subject has a strongly multidisciplinary character and involves other several subjects like mechanics, vibrations, aerodynamics, structural analysis. Consequently, the students find stimulating the challenge of merging their knowledge at different areas. In this paper, a teaching experience on the solution of the aeroelastic problem of a 3D-wing through six different computer tasks is presented. The main objective is to attempt a relatively complex problem using a simple version of the Finite Element Method with only four degrees of freedom. The students begin creating the shape functions of the discrete model and finish solving the flutter instability problem.[ES] La modelización aeroelástica de estructuras aeronáuticas es una materia fundamental en la formación de estudiantes de Grado de Ingeniería Aeroespacial. Esta materia tiene es multidisciplinar e involucra diferentes asignaturas vistas durante los estudios como mecánica, vibraciones, aerodinámica o estructuras. Por ello, los estudiantes encuentran estimulante el reto de fusionar sus conocimientos en diferentes areas en una sola asignatura. En este artículo se presenta una experiencia docente en la que se busca resolver el problema aeroelástico de un ala a través de 6 prácticas informáticas. El objetivo es poder abordar un problema tridimensional a priori relativamente complejo con una herramienta de gran utilidad en la mecánica computacional como es el método de los elementos finitos. Los estudiantes comienzan creando las funciones de forma para el modelo discreto y acaban resolviendo el problema de inestabilidad dinámica, el flameoLázaro, M. (2015). A Teaching Experience: Aeroelasticity and the Finite Element Method. Modelling in Science Education and Learning. 8(2):109-132. doi:10.4995/msel.2015.3523SWORD1091328

    Aprendiendo Vibraciones Mec´anicas con Wolfram Mathematica

    Full text link
    [EN] Mechanical vibrations as subject can be found within many Engineering and Science Degrees. To achieve that the students understand the mathematics and its physical interpretation is the objective we should get as docents. In this paper we describe how to create a simple graphical model of a single degree of freedom vibrating system allowing us to visualize concepts like above concepts damping, resonance or forced vibrations. For that, we use the popular symbolic software Wolfram Mathematica with which, without an excessive programming complexity, we can obtain a very satisfactory visual model capable to move itself, controlled by parameters. In addition, the model incorporates the curve-response, something that links the mathematical results with reality[ES] Las vibraciones mecánicas como asignatura están en un muchos estudios de ingeniería y ciencias. Lograr que los estudiantes entiendan las matemáticas y su interpretación física es el objetivo que debemos conseguir como docentes. En este artículo describimos la forma de crear un modelo gráfico sencillo de un grado de libertad dinámico que permita visualizar conceptos como amortiguamiento, resonancia o vibraciones forzadas. Para ello usamos el popular software simbólico Wolfram Mathematica. Sin un excesivo esfuerzo de programación se puede crear un modelo matemático vinculado a un modelo gráfico–dinámico que permite visualizar el movimiento de una masa unida a un muelle. Además, el modelo incorpora también de forma dinámica la curva de respuesta en el tiempo, algo que permite vincular los resultados matemáticos con la realidad.Lázaro, M. (2015). Learning Mechanical Vibrations with Wolfram Mathematica. Modelling in Science Education and Learning. 8(2):93-108. doi:10.4995/msel.2015.3522SWORD9310882García-Fogeda, P., & Sanz-André, A. (2014). Introducción a las vibraciones. Garceta Grupo Editorial.Gatti, P. L., & Ferrari, V. (2003). Applied Structural and Mechanical Vibrations. Theory, Methods and measouring instrumentation. Taylor & Francis Group.He, J., & Fu, Z.-F. (2001). Modal Analysis. Butterworth Heinemann.Hodges, D. H., & Pierce, G. A. (2001). Introduction To Structural Dynamics And Aeroelasticity. Cambridge Aerospace Series.Kelly, S. G. (2000). Fundamentals of Mechanical Vibrations. McGraw Hill.Meirovitch,, L., & Parker,, R. (2001). Fundamentals of Vibrations. Applied Mechanics Reviews, 54(6), B100-B101. doi:10.1115/1.1421112Paz, M. (2013). Structural dynamics. theory and computation. Springer.Thorby, D. (2008). Structural Dynamics and Vibration in Practice. Butterworth Heinemann.Wright, J., & Cooper, J. (2007). Introduction to Aircraft Aeroelasticity and Loads. doi:10.2514/4.47935
    corecore