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Abstract: This article presents a time domain approach to the flutter analysis of a missile-type
wing/body configuration with concentrated structural non-linearities. The missile wing is con-
sidered fully movable and its rotation angle contains the structural freeplay-type non-linearity.
Although a general formulation for flexible configurations is developed, only two rigid degrees
of freedom are taken into account for the results: pitching of the whole wing/body configuration
and wing rotation angle around its hinge. An unsteady aerodynamic model based on the slender-
body approach is used to calculate aerodynamic generalized forces. Limit-cycle oscillations and
chaotic motion below the flutter speed are observed in this study.

Keywords: aeroelasticity, non-linearity, slender wing/body, flexible, freeplay

1 INTRODUCTION

Although the assumption of linearity for both aero-
dynamics and structural dynamics is often employed
in the aeroelastic analysis of missiles, there are many
examples where non-linearities exist that can have a
significant effect on the aeroelastic response.

Structural non-linearities can be characterized as
either distributed or concentrated, according to their
origin. Distributed non-linearities arise from slip-
page in riveted joints or from buckling in a built-up
structure, for example, whereas concentrated non-
linearities have a local effect in a control mechanism or
an attachment of external stores. Most flight vehicles
may have inherently concentrated structural non-
linearities such as freeplay, friction, hysteresis, and
preload in the hinge part of their control surfaces
and folded sections. Concentrated structural non-
linearities may be generated from a worn or loose
hinge connection of control surface, joint slippage,
and manufacturing tolerance. An excellent review
of some possible structural non-linearities and their
aeroelastic effect are given by Breitbach [1] and
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Woolston et al. [2]. Among all these several structural
non-linearities, the freeplay usually gives the most
critical flutter condition. Missile control surfaces that
are designed to be easily attached or removed, all-
movable aircraft lifting surfaces such as horizontal
tails, or rotatable pylons on variable-sweep aircraft
exhibit freeplay-type non-linear behaviour that can be
potentially dangerous from an aeroelastic standpoint.
This article deals with the freeplay non-linearity of a
missile control surface.

Aerodynamic non-linearities are important in the
transonic regime or stall conditions. Kim and Lee
[3] analyse a two-degrees-of-freedom airfoil with a
freeplay non-linearity in pitch and plunge directions
in the transonic and low-supersonic flow regime,
using a two-dimensional (2D) unsteady Euler code
to calculate unsteady aerodynamic forces. Tang and
Dowell [4] accounted for aerodynamic stall using the
Office National d’Etudes et de Recherches Aérospa-
tiales (French Aeronautics and Space Research Center)
(ONERA) model. However, most authors assume linear
aerodynamics in the subsonic flow regime, and simpli-
fied theories have been used till now. Laurenson and
Trn [5] use a quasi-steady approach in the sense that
the aerodynamic forces are in phase with the motion of
a missile control surface, Brase and Eversman [6] use
a doublet-lattice method, Price et al. [7] uses incom-
pressible Wagner’s function for a 2D airfoil, and O’Neil
and Strganac [8] model the aerodynamic forces by
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348 F Arévalo and P García-Fogeda

the aerodynamic theory of Theodorsen for a 2D air-
foil. This article uses the slender-body hypothesis so
that the subsonic/supersonic unsteady aerodynamic
equations are reduced to calculate 2D incompressible
flow in planes transverse to the freestream velocity.

Additionally, all the aforementioned studies deal
with 2D airfoils or 3D control surfaces with struc-
tural non-linearities in pitch or plunge directions.
None of them has taken into account wing/body
interference when calculating aerodynamic forces.
Wing/body configurations can be solved, for arbi-
trary motions and deformations, by panel methods
or computational fluid dynamics (CFD) codes. Panel
methods have two main drawbacks: first, for very
slender bodies, numerical instabilities occur and the
number of panels has to be highly increased; second,
the unsteady aerodynamic forces are calculated in the
frequency domain but to study non-linear aeroelastic
characteristics the time domain is more suitable. For
the CFD codes the computational time needed for a
single case is yet the main inconvenience. In the first
stages of the design process or when the influence of
several parameters needs to be evaluated the use of
CFD codes can be unaffordable. The application of the
slender wing/body theory can provide good results for
these first stages of the design process. The unsteady
slender-body theory developed here is based on ref-
erences [9] to [11]. In these references steady aerody-
namic forces are calculated over slender wing/body
configurations by means of conformal transformation
tools. For unsteady calculations for slender wing/body
configurations, the potential equation remains the
same as the equation for the steady cases (i.e. 2D
transverse flow), what makes valid the same con-
formal transformations, but boundary conditions are
different due to the unsteady motion of the wing/body.

Thus, a wing/body configuration including aerody-
namic interference and a non-linearity on the wing
control mechanism is analysed in this article by means
of unsteady slender-body theory. A typical configu-
ration of the type studied can be seen in Fig. 1. The
underwing store or missile on the figure is the only
component considered for the analysis.

The missile can be in free-flight or attached to an
aircraft. In the last case, the aerodynamic interference
between aircraft wing and missile will not be taken
into account as a first step. This aerodynamic inter-
ference should be negligible for the lateral motion of
the missile (mainly lateral and yawing modes of the
missile/pylon component). Only for vertical motion
of the missile, the wing/missile aerodynamic interfer-
ence should be assessed. Therefore, the results shown
into this article are representative for free-flight condi-
tion or attached-to-aircraft configuration undergoing
lateral displacements.

The results obtained for the unsteady general-
ized aerodynamic forces are directly in the time
domain and can be coupled with the time domain

Fig. 1 Typical configuration under the wing

structural equations including any type of structural
non-linearity. Limit-cycle oscillations or chaos bands
as functions of different parameters can be obtained
after numerical integration. Time integration of the
equations and discrete Fourier analysis of the response
are the tools used to investigate the type of motion that
results from particular initial conditions. Although
a general formulation is presented (including rigid
degrees of freedom plus bending flexible modes), only
wing/body pitching and wing rotational angle degrees
of freedom are considered in the results.

2 GENERAL FORMULATION

Let one consider an isolated slender wing/body con-
figuration flying at a velocity U∞ and performing
small motion in the z-axis direction transverse to the
freestream (see Fig. 2). Wing and body x-constant
frames are considered rigid, and the ‘z’ displace-
ments are defined by an equation that depend on ‘x’
exclusively

w(x; t) =
N∑

i=1

ψi(x) · ξi(t) (1)

where ψi are the modes of vibration (normal modes),
including rigid wing/body modes, and ξi are the gen-
eralized co-ordinates. This displacement w(x; t) is
defined positive downwards.

These slender wing/body configurations resemble
missiles, in which the wing acts as an aerodynamic
control. Therefore, together with the plunging and
pitching rigid modes of the complete configuration,
the wing may have its own rigid and flexible modes
relative to the body. The all-movable wing, which is
discussed here, is an example of these kinds of config-
urations, in which the complete wing rotates around
the hinge to control the missile. Nielsen [9] describes
several types of aerodynamic control surfaces.
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Fig. 2 Slender wing/body configuration flying at velocity U∞

Plunging and pitching rigid modes of the whole
missile configuration can have different physical
meanings. For example, they can represent bending
and torsion motions of the wing section of the airplane
where the missile is attached, or they can represent
the airplane wing/missile attachment. This bend-
ing/torsion or attachment stiffness is characterized by
support springs Kh and Kα (Fig. 2).

Missile wing rigid mode is normally the one associ-
ated with rotary motion around the hinge to control
the missile. The control mechanism stiffness is repre-
sented by the root rotational support spring Kβ (Fig. 2).

Concentrated structural non-linearities can be
introduced in one or several rigid degrees of free-
dom, although this article deals with freeplay-type
non-linearity associated with the wing control mecha-
nism. This non-linearity might represent a loose hinge,
linkage of a control system, or possible joint slippage.

The equations of motion that describe the time evo-
lution of the generalized co-ordinates are obtained
using Lagrange’s equations

d
dt

(
∂T

∂ξ̇i

)
− ∂T

∂ξi
+ ∂U

∂ξi
= Qi, i = 1, 2, . . . , N (2)

where T is the kinetic energy, U is the strain energy, Qi

is the generalized aerodynamic force corresponding to
the generalized co-ordinate ξi, and N is the number of
modes.

3 INERTIA, STIFFNESS, AND AERODYNAMIC
LOAD CALCULATION

In this section, Langrange’s equations are written in
matrix notation.

3.1 Inertia loads

Inertia loads result from deriving the kinetic energy
with respect to the first time derivative of the gen-
eralized co-ordinates. Kinetic energy expressed as a
function of the generalized co-ordinates is

T =
N∑

i=1

N∑
j=1

(∫ L

0

1
2

m(x)ψi(x)ψj(x) dx
)

ξ̇i ξ̇j (3)

where m(x) is the wing/body mass per unit length, L is
the total length, and N is the number of modes. If one
of the modes corresponds to the wing motion/bending
relative to the body, the integration is extended exclu-
sively to the wing, with m(x) being the wing mass per
unit length.

From this it follows that

d
dt

(
∂T

∂ξ̇i

)
=

N∑
j=1

Jij ξ̈j (4)

where Jij = ∫L
0 m(x)ψi(x)ψj(x) dx

In matrix notation, with all the generalized co-
ordinates ordered in a column, it can be written as

⎡
⎢⎢⎢⎢⎣

J11 J12 · · · J1N

J21 J22 · · · J2N

...
...

...

JN 1 JN 2 · · · JNN

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̈1

ξ̈2

...

ξ̈N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= [J] · {ξ̈} (5)

3.2 Stiffness matrix

Stiffness loads result from deriving the strain energy
with respect to the generalized co-ordinates. Strain
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energy is expressed as a function of the generalized
co-ordinates as follows

U = Urigid + Uflexible

=
M∑

i=1

1
2

Kiξ
2
i +

N∑
i=1

N∑
j=1

(∫ L

0

1
2

EI (x)ψ ′′
i ψ ′′

j dx
)

ξiξj

(6)

where Urigid is the strain energy associated to the
springs attached to the wing/body rigid degrees of
freedom (those that simulate external actions over
the wing and/or body component) and Uflexible the
strain energy associated with the wing/body bending
flexible modes. EI (x) is the flexural rigidity and M is
the number of rigid modes. As aforementioned, three
rigid degrees of freedom are going to be considered:
plunging, pitching of the whole wing/body configura-
tion, and the rotary degree of freedom of the wing as
aerodynamic control.

If one of the modes corresponds to the wing
motion/bending relative to the body, the integration
is extended exclusively to the wing, with EI (x) being
the wing stiffness.

From this it follows that

∂U
∂ξi

= Kiξi +
N∑

j=1

Kijξj (7)

where Kij = ∫L
0 EI (x)ψ ′′

i ψ ′′
j dx

In matrix notation, with all the generalized co-
ordinates ordered in a column⎡

⎢⎢⎢⎢⎣
K1 K12 · · · K1N

K21 K2 · · · K2N

...
...

...

KN 1 KN 2 · · · KNN

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ1

ξ2

...

ξN

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= [K] · {ξ} (8)

where Kii is zero if i is a rigid mode.

3.3 Aerodynamic generalized forces

The slender wing/body theory is applied for the com-
putation of the unsteady aerodynamic forces. The the-
ory is formulated so that rigid and flexible wing/body
modes can be considered and the generalized co-
ordinates are kept in the time domain. In this way, a
full set of equilibrium equations in the time domain
are obtained for the numerical integration.

Aerodynamic generalized forces over wing and body
components are obtained as follows

QB
ij = q∞

∫ L

0

∫ 2π

0
C B

pj(x, θ ; t)R(x) sin θ ψi(x) dθ dx (9)

QW
ij = q∞

∫∫
Sw

�C w
pj(x, y; t)ψi(x) dx dy (10)

where

QB
ij = ith-mode generalized force induced by the jth
mode of deflection

QW
ij = ith-mode generalized force induced by the jth
mode of deflection

q∞ = dynamic pressure
C B

pj = unsteady pressure coefficient over body induced
by mode of deflection j

�C w
pj = unsteady pressure coefficient over wing

induced by mode of deflection j
R(x) = body radius

The total generalized forces over the wing/body con-
figuration are obtained by adding wing and body
contributions

Qij = QW
ij + QB

ij (11)

The pressure coefficient depends linearly on the
generalized co-ordinates, and the generalized force Qij

can be written as

Qij = q∞{Aξiξj ξj + Aξi ξ̇j
ξ̇j + Aξi ξ̈j

ξ̈j} (12)

The generalized aerodynamic force is then

Qi =
N∑

j=1

Qij (13)

In matrix notation

{Q} = q∞{[Aξξ ]{ξ} + [Aξ ξ̇ ]{ξ̇} + [Aξ ξ̈ ]{ξ̈}} (14)

Unsteady pressure coefficient distributions are
calculated by assuming slender wing/body configu-
ration. This hypothesis is fulfilled in missile configura-
tions just as the ones analysed in this article. Section
4 details the slender-body theory on its application to
unsteady flow.

4 PRESSURE COEFFICIENT DISTRIBUTIONS

Pressure coefficient requires solving the velocity
field around the configuration. Slender configuration
hypothesis simplifies this calculation reducing the
compressible 3D flow to incompressible 2D.

4.1 Potential flow over slender wing/body
configuration

The fluid flow is assumed to be inviscid and isentropic.
Thus, the fluid velocity can be defined by the scalar
potential 	(x, y, x; t). In a body-fixed reference system
[12], this potential is written as

	̂(x̂, ŷ, ẑ; t̂) = x̂ + ∂ŵ(x̂; t̂)
∂ x̂

ẑ + 
̂(x̂, ŷ, x̂; t̂) (15)

where 
̂(x̂, ŷ, ẑ; t̂) is the non-dimensional pertur-
bation potential and ŵ(x̂; t̂) is the instantaneous
non-dimensional wing/body z-displacement. The

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering
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Fig. 3 Comparison of the � function between the
present method and that of Sacks [13]

wing/body configuration length L and the fluid veloc-
ity at infinity U∞ are the reference magnitudes used
to build non-dimensional variables. The perturbation
potential is split into two parts: the mean zero-angle-
of-attack potential flow φ̂0 and the unsteady potential
φ̂1, i.e.


̂(x̂, ŷ, ẑ; t̂) = φ̂0(x̂, ŷ, ẑ) + φ̂1(x̂, ŷ, ẑ; t̂) (16)

Substituting the previous expression for the poten-
tial in the full potential equation, and collecting terms
of the same order of magnitude

(
1 − M 2

∞
)2 ∂2φ̂0

∂ x̂2
+ ∂2φ̂0

∂ ŷ2
+ ∂2φ̂0

∂ ẑ2
= 0 (17)

(
1 − M 2

∞
) ∂2φ̂1

∂ x̂2
+ ∂2φ̂1

∂ ŷ2
+ ∂2φ̂1

∂ ẑ2
− 2 M 2

∞
∂2φ̂1

∂ x̂∂ t̂

− M 2
∞

∂2φ̂1

∂ t̂ 2
= F (x̂, ẑ, ŵ, φ̂0, M∞; t) (18)

Table 1 Geometrical characteristic and other parameters of the wing/body configuration of Fig. 1

Body radius R̂(x̂) = 2τ x̂(1 − x̂) if 0 � x̂ � 0.5, and R(x̂) = τ/2 if x̂ � 0.5; τ = 0.1
Centre of wing/body rigid pitching mode x̂α = 0.5
Wing Sweep: 30◦

Position relative to the body: x̂0 = 0.75; x̂f = 0.95
Hinge position: x̂β = x̂0 + 3(x̂f − x̂0)/4

Stiffness and mass properties Rigid modes natural frequencies: ωh/ω0 = 1.0, ωα/ω0 = 1.0, ωβ/ω0 = 2.0
Mass parameter μ = 1.0

Freeplay dead space band (degrees) [−0.1, 0.1]
Initial conditions for integration α(0) = α̇(0) = β̇(0) = 0, β(0) = 0.1◦

Dimensions are non-dimensionalized by the wing/body length L.
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Fig. 4 Dominant frequency of the β time history (from discrete Fourier analysis) versus non-
dimensional flight speed
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two equations for the potentials φ̂0 and φ̂1 are obtained.
For a slender wing/body configuration, it is shown [9]
that both previous equations are reduced to

∂2φ̂0

∂ ŷ2
+ ∂2φ̂0

∂ ẑ2
= 0 (19)

∂2φ̂1

∂ ŷ2
+ ∂2φ̂1

∂ ẑ2
= 0 (20)

These equations are known to correspond to a dis-
turbed flow of an incompressible fluid in the plane ŷẑ.

The mean flow equation has the following solution
for axisymmetric bodies that fulfils the boundary con-
dition of tangency over the wing/body surface and
zero disturbance velocity at infinity

φ̂0(x̂, r̂) = R̂(x̂)
dR̂(x̂)

dx̂
ln

√
ŷ2 + ẑ2 + g(x̂, M∞) (21)

where R̂(x̂) is the dimensionless body radius.

The equation for the unsteady potential φ̂1 must be
solved with the boundary condition of tangency over
the body surface and the following velocity at infinity

∂φ̂1

∂ ẑ
= ∂ŵ

∂x
+ ∂ŵ

∂ t̂
(22)

This problem of 2D incompressible flow with a
boundary condition at infinity can be solved using
the theory of conformal transformation. This con-
formal transformation will depend of the tangency
boundary condition at the wing/body surface. Both
Nielsen [9] and Krasnov [10] solve the problem of the
wing/body configuration with wing and body mov-
ing together (fixed wing), and Nielsen [9] solves the
problem of wing/body configuration with the wing
having a motion relative to the body (wing as aero-
dynamic control). Although these authors solve the
steady problem for rigid wing/body configuration,
the unsteady one for flexible wing/body configuration

Fig. 5 Non-dimensional velocity 2.00: (a) β time history, (b) β phase diagram, and (c) discrete
Fourier analysis of β time history. Characteristic frequencies are 0.42, 13.25
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is similar except for updating the infinity boundary
condition by equation (22).

4.2 Unsteady pressure coefficient

Integration of the zero angle-of-attack pressure coef-
ficient distribution Cp0 results in zero total aerody-
namic force/moment over the entire configuration.
The unsteady pressure coefficient is obtained from the
following equation

Cp1(x̂, ŷ; t̂) = −2

[(
1 + ∂φ̂0

∂ x̂

) (
∂φ̂1

∂ x̂
− ẑ

∂2ŵ
∂ x̂2

∂φ̂0

∂ x̂

)

+ ∂φ̂0

∂ ẑ

(
∂φ̂1

∂ ẑ
+ ∂ŵ

∂ x̂

)
+ ∂φ̂0

∂ ŷ
∂φ̂1

∂ ŷ
+ ∂φ̂1

∂ t̂

+ ∂ŵ

∂ t̂

∂φ̂0

∂ ẑ
− ẑ

∂2ŵ

∂ x̂∂ t̂

∂φ̂0

∂ x̂

]
(23)

This pressure coefficient is substituted in Equations
(9) and (10) to calculate the aerodynamic generalized
forces.

The unsteady aerodynamic forces have been vali-
dated by comparing the stability derivatives for the
wing/body configuration of reference [13]. A unique
function � for all stability derivatives can be defined as

�

(
a0

s0

)
= CLα

(π/2)A
= CLq

(π/6)A
= CLα̇

(π/6)A

= − CMα

(π/72)A
= − CMq

(π/24)A
(24)

where a0 is the body radius at the base and s0 is the
semi-span of the triangular wing.

The results for this function are compared with those
obtained by Sacks [13] in Fig. 3. The solid line is Sack’s
results and the dots are the ones obtained by the
present code.

Fig. 6 Non-dimensional velocity 13.00: (a) β time history, (b) β phase diagram, and (c) discrete
Fourier analysis of β time history. Characteristic frequencies are 0.727, 1.453, 2.177, 3.630,
and 4.360
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5 NON-DIMENSIONAL MATRIX FORMULATION
OF LAGRANGE’S EQUATIONS

Next by coupling the generalized unsteady aerody-
namic forces with the structural equations, the follow-
ing system of equations describe the time evolution of
the generalized co-ordinates with time

[J]
{

d2ξ

dt 2

}
+ [K]{ξ} = q∞

{
[Aξξ ]{ξ} + [Aξ ξ̇ ]

{
dξ

dt

}

+ [Aξ ξ̈ ]
{

d2ξ

dt 2

}}
(25)

Ordering this equation and using non-dimensional
parameters it is obtained

(
[Ĵ] − 1

2πμ
[Âξ ξ̈ ]

) {
d2ξ̂

dt 2

}
− (U∞/ω0L)

2πμ
[Âξ ξ̇ ]

{
dξ̂

dt̂

}

+
(

[K̂] − (U∞ω0L)2

2πμ
[Âξξ ]

)
{ξ̂} = 0 (26)

where: t̂ = ω0t = dimensionless time; ξ̂ = dimension
less generalized co-ordinate ξ/L; ω0 = reference fre-
quency, normally the natural frequency of rigid
wing/body pitching vibration in vacuum is chosen in
the literature; μ = m0/πρ∞L2 = density ratio, with m0

the reference mass per unit length, L the wing/body
configuration length, and ρ∞ the air density at flight
level.

This system of equations is numerically integrated,
yielding the system time history response informa-
tion. System stability characteristics are then obtained
by evaluating the nature of this system response. The
integration method is validated, without the structural
non-linearities, by comparing linear flutter velocities
with those obtained by the V –g method. Once lin-
ear flutter is obtained, structural non-linearities are
introduced into the system and time histories are
plotted.

Concentrated structural non-linearities will be
simulated through the stiffness matrix [K]. As

Fig. 7 Non-dimensional velocity 14.00: (a) β time history, (b) β phase diagram, and (c) discrete
Fourier analysis of β time history. Chaos without characteristic frequencies
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mentioned above, non-linearity is associated with
freeplay, or ‘slop’, in the root support stiffness of
the wing. It will be shown that this non-linear
approach, where V –g method fails, can detect strange
behaviour of the system below the linear flutter
speed.

6 RESULTS

A simplified two-degrees-of-freedom wing/body con-
figuration is the basis for the calculation of the
following results (Fig. 2). The two modes that corre-
spond to the mentioned degrees of freedom are the
following:

(a) wing/body angle of attack, α: pitching rigid mode
of the whole wing/body configuration, positive in
the nose-up direction, ψ̂1 = x̂ − x̂α;

(b) wing rotation angle, β: wing rotation around the
hinge x̂β as an aerodynamic control, positive when
leading edge moves up, ψ̂2 = x̂ − x̂β .

Neither the plunging rigid mode of the whole
wing/body configuration nor flexible modes are con-
sidered here in order to reduce the number of
unknown sources than determine the solution pat-
tern. Further studies will include the effect of these
modes.

Flutter without structural non-linearities has been
obtained for checking purposes. V –g method sup-
plies flutter speeds that have been validated by time
integration of the equations.

After that, freeplay-type non-linearity is introduced
in the wing rotational degree of freedom β. Table 1
summarizes the main dimensions of the wing/body
configuration together with other properties of the
system (mass parameter value, initial conditions, etc.).

Fig. 8 Non-dimensional velocity 25.00: (a) β time history, (b) β phase diagram, and (c) discrete
Fourier analysis of β time history. Characteristic frequencies are 1.300, 3.900, 6.507, and
11.707
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To avoid instability in the numerical integration
when passing from one linear region to another in
the freeplay type of non-linearity, Conner et al. [14]
have shown that the application of Henon’s method
has many advantages. For the results presented in
this article the method of reference [14] has been
adopted.

Equation (26) is integrated using the non-
dimensional flight speed U∞/ω0L as a parameter.
Figures 5 to 11 show time histories (a), phase diagram
(b), and power spectral densities (c) of the wing control
deflection β for several values of the non-dimensional
speed. Figure 4 shows the dominant frequency of the
β time history as a function of the non-dimensional
flight speed. Initial conditions are zero angle of attack
and 0.1◦ for β deflection.

Starting from zero, the non-dimensional flight
speed is increased. Damped oscillations (Fig. 5(a))
are obtained till the non-dimensional speed of 13 is

reached (Fig. 6(a)), where both degrees of freedom α

and β develop no-damped limit-cycle oscillations. The
β phase diagram with a closed orbit in 0.1◦ shows that
β suffers short-time oscillations around 0.1◦.

Immediately after this speed, there appears a band
of chaotic motion from 13.5 to 15 non-dimensional
flight speed (Fig. 7(a)). The wing control deflection
β jumps arbitrarily from −0.1◦ to 0.1◦, with short-
time oscillations between two jumps. The chaos-type
response is detected by the appearance of a broad-
band power spectral density (PSD) without dominant
frequencies of the β time history (Fig. 7(a)) and a phase
diagram (Fig. 7(b)) without defined attractor points
(strange attractors in the nomenclature of non-linear
dynamics).

After this chaotic band, a new type of limit-cycle
oscillation (LCO1 in Fig. 4) appears for non-dimen-
sional speeds from 15 to 49. This is characterized
in the phase diagram of Fig. 8(b) by a configuration

Fig. 9 Non-dimensional velocity 50.00: (a) β time history, (b) β phase diagram, and (c) discrete
Fourier analysis of β time history. Chaos without characteristic frequencies
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with two closed orbits (two fixed points), showing that
β oscillates around 0.1◦ or −0.1◦ before jumping to
−0.1◦ or 0.1◦, respectively.

A new chaotic band appears from 49 to 51 non-
dimensional speeds. β wing control deflection devel-
ops chaotic jumps from −0.1◦ to 0.1◦ and dominant
characteristic frequencies do not exist as the power
spectral density plot shows (Fig. 9(c)).

From the non-dimensional speed to the flutter
speed, successive limit-cycle oscillations determine
the β response. A first limit-cycle oscillation (LCO2 in
Fig. 4) consists of jumps from −0.1◦ to 0.1◦ with short-
time double oscillations around 0.1◦ (Fig. 10(a)). This
explains the closed orbit of the phase diagram around
0.1◦ (Fig. 10(b)). The same occurs with the limit-
cycle oscillation LCO4 (Fig. 4) but with the short-time
double oscillations around −0.1◦. The other two limit-
cycle oscillations (LCO3 and LCO5 in Fig. 4) consist of
sinusoidal oscillations from −0.1◦ to 0.1◦. Finally,

flutter velocity is obtained at the linear flutter speed
(i.e. the flutter speed without structural non-linearities
(Figs 11(a) to (c))).

The frequencies in aeroelastic systems depend upon
aerodynamic pressures. In fact, the dominant fre-
quency of the β response increases with the non-
dimensional speed (Fig. 4). The system frequencies
may become tuned with a natural frequency of the
system (or a multiple) as a consequence of the aero-
dynamic effects. The natural frequency of the pitching
mode (i.e. in the absence of freestream velocity), is 0.42
(frequency labelled fα in Fig. 4). It can be seen from
Fig. 4 that the β-response pattern changes occur when
the aeroelastic frequency crosses through particular
multiples of the pitching mode natural frequency.

Initial conditions are also important in the response
pattern. It has been observed that changing the
initial wing/body angle of attack α(0), the chaotic
behaviour obtained for a non-dimensional speed of

Fig. 10 Non-dimensional velocity 60.00: (a) β time history, (b) β phase diagram, and (c) discrete
Fourier analysis of β time history. Characteristic frequencies are 3.340, 6.680, 10.020, and
13.370
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Fig. 11 Non-dimensional velocity 115.00: (a) β time history, (b) β phase diagram, and (c) discrete
Fourier analysis of β time history. Characteristic frequencies are 8.800

50 disappears. In fact, this chaotic motion was sus-
tained for all initial β(0) when α(0) was less than 0.15◦.
If α(0) was greater than 0.15◦ the chaotic behaviour
was substituted by a limit-cycle oscillation motion.

Other wing/body configuration with the wing in a
forward position has been tested. The response pat-
tern appears to be similar to that observed in Fig. 4 for
wing in the rear position, except that the chaotic bands
are changed to other non-dimensional speed ranges.

7 CONCLUSIONS

The present study deals with the time domain aeroe-
lastic analysis for a missile-type wing/body config-
uration with concentrated structural non-linearities.
The missile can be in free-flight or attached to the
aircraft. In the last case, only lateral motions of the

missile are considered since the aerodynamic interfer-
ence between aircraft wing and missile has not been
included at this stage.

The method used in this study can be applied to
arbitrarily shape flexible wing/body configurations
with multiple non-linearities. A typical missile-type
configuration with freeplay non-linearity in the wing
control mechanism is selected for numerical simu-
lation. An unsteady slender-body theory is applied
to take into account the wing/body aerodynamic
interference.

Non-linear flutter analysis shows that limit-cycle
oscillations and chaotic motion appear below the flut-
ter speed. Increasing the flight speed the aeroelastic
frequency of the response increases, and response
pattern changes occur when this frequency is tuned
with particular multiples of the wing/body pitching
mode natural frequency. Initial conditions modify the
results and chaotic behaviour changes to limit-cycle
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oscillations when the initial angle of attack of the
wing/body configuration is greater than a particular
value. Wing position relative to the body also causes
similar effects.

Divergent oscillations are obtained above the same
flight speed than the equivalent linear system (i.e. the
linear flutter speed).

Further developments will include a more detailed
study of the system sensibility to the initial con-
ditions, wing/body configuration parameters (wing
shape, wing position relative to the body, and so on),
flexible modes, and possible non-linearities in other
degrees of freedom.

© Authors 2011

REFERENCES

1 Breitbach, E. Effects of structural nonlinearities on air-
craft vibration and flutter. In Proceedings of the 45th
Structures and Materials AGARD Panel Meeting, AGARD
Report 665, Voss, Norway, 1977.

2 Woolston, D. S., Runyan, H. L., and Andrews, R. E. An
investigation of certain types of structural, nonlinearities
on wing and control surface flutter. J. Aeronaut. Sci., 1957,
24(1), 57–63.

3 Kim, S.-H. and Lee, I. Aeroelastic analysis of a flexible
airfoil with a freeplay nonlinearity. J. Sound Vibr., 1995,
193(4), 823–846.

4 Tang, D. M. and Dowell, E. H. Flutter and stall response
of a helicopter blade with structural nonlinearity. J. Aircr.,
1992, 29(5), 953–960.

5 Laurenson, R. M. and Trn, R. M. Flutter analysis of mis-
sile control surfaces containing structural nonlinearities.
AIAA J., 1980, 18(10), 1245–1251.

6 Brase, L. O. and Eversman, W. Application of tran-
sient aerodynamics to the structural nonlinear flutter
problem. J. Aircr., 1988, 25(11), 1060–1068.

7 Price, S. J., Lee, B. H. K., and Alighanbari, H. Postin-
stability behaviour of a two-dimensional airfoil with a
structural nonlinearity. J. Aircr., 1994, 31(6), 1395–1401.

8 O’Neil, T. and Strganac, T. W. Aeroelastic response of a
rigid wing supported by nonlinear springs. J. Aircr., 1998,
35(4), 616–622.

9 Nielsen, J. N. Missile aerodynamics, 1960 (McGraw-Hill
Book Company).

10 Krasnov, N. F. Aerodynamics, methods of aerodynamic
calculations (II), 1980 (Mir Publishers, Moscow).

11 Dugan, D. W. and Hikido, K. Theoretical investigation of
the effects upon lift of a gap between wing and body of a
slender wing-body combination. NACA TN 3224, 1954.

12 Hoffman, G. and Platzer, M. F. On supersonic flow past
oscillating bodies of revolution. AIAA J., 1966, 4(2), 370.

13 Sacks, A. H. Aerodynamic forces and stability derivatives
for slender bodies of general cross sections. NACA TN
3283, November 1954.

14 Conner, M. D., Virgin, L. N., and Dowell, E. H. Accu-
rate numerical integration of state/space models for
aeroelastic systems with free play. AIAA J., 1996, 34,
2202–2205.

Proc. IMechE Vol. 225 Part G: J. Aerospace Engineering

 at Universidad Politecnica on May 27, 2011pig.sagepub.comDownloaded from 

http://pig.sagepub.com/

