179 research outputs found

    Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery

    Get PDF
    Background The relationship between monogenic and polygenic forms of epilepsy is poorly understood, and the extent to which the genetic and acquired epilepsies share common pathways is unclear. Here, we use an integrated systems-level analysis of brain gene expression data to identify molecular networks disrupted in epilepsy. Results We identify a co-expression network of 320 genes (M30), which is significantly enriched for non-synonymous de novo mutations ascertained from patients with monogenic epilepsy, and for common variants associated with polygenic epilepsy. The genes in M30 network are expressed widely in the human brain under tight developmental control, and encode physically interacting proteins involved in synaptic processes. The most highly connected proteins within M30 network are preferentially disrupted by deleterious de novo mutations for monogenic epilepsy, in line with the centrality-lethality hypothesis. Analysis of M30 expression revealed consistent down-regulation in the epileptic brain in heterogeneous forms of epilepsy including human temporal lobe epilepsy, a mouse model of acquired temporal lobe epilepsy, and a mouse model of monogenic Dravet (SCN1A) disease. These results suggest functional disruption of M30 via gene mutation or altered expression as a convergent mechanism regulating susceptibility to epilepsy broadly. Using the large collection of drug-induced gene expression data from Connectivity Map, several drugs were predicted to preferentially restore the down-regulation of M30 in epilepsy toward health, most notably valproic acid, whose effect on M30 expression was replicated in neurons. Conclusions Taken together, our results suggest targeting the expression of M30 as a potential new therapeutic strategy in epilepsy

    The Binding of Urinary Components and Uropathogens to a Silicone Latex Urethral Catheter

    Get PDF
    The adhesion of uropathogens to urethral catheters initiates the infectious process which causes morbidity in a large patient population. Catheters were examined by X-ray photoelectron spectroscopy after use in three patients and following incubation in vitro with human urine, urea and creatinine, and found to have adsorbed a conditioning film containing carbon, nitrogen and in some cases phosphorous, calcium and sodium containing components. The binding of three strains of uropathogenic bacteria to the catheter surface was significantly influenced by the suspending fluid composition

    Hyperacute Detection of Neurofilament Heavy Chain in Serum Following Stroke: A Transient Sign

    Get PDF
    Serological biomarkers which enable quick and reliable diagnosis or measurement of the extent of irreversible brain injury early in the course of stroke are eagerly awaited. Neurofilaments (Nf) are a group of proteins integrated into the scaffolding of the neuronal and axonal cytoskeleton and an established biomarker of neuro-axonal damage. The Nf heavy chain (NfH(SMI35)) was assessed together with brain-specific astroglial proteins GFAP and S100B in hyperacute stroke (6 and 24 h from symptom onset) and daily for up to 6 days. Twenty-two patients with suspected stroke (median NIHSS 8) were recruited in a prospective observational study. Evidence for an ischaemic or haemorrhagic lesion on neuroimaging was found in 18 (ischaemia n = 16, intracerebral haemorrhage n = 2). Serum NfH(SMI35) levels became detectable within 24 h post-stroke (P < 0.0001) and elevated levels persisted over the study course. While GFAP was not detectable during the entire course, S100B levels peaked at the end of the observation period. The data indicate that significant in vivo information on the pathophysiology of stroke may be obtained by the determination of NfH(SMI35). Further studies are required to evaluate whether NfH(SMI35) in hyperacute stroke reflects the extent of focal ischaemic injury seen on neuroimaging or is a consequence of more diffuse neuro-axonal damage

    Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats: A Role for Glycogen Synthase Kinase-3β

    Get PDF
    OBJECTIVE—There is evidence that insulin reduces brain injury evoked by ischemia/reperfusion (I/R). However, the molecular mechanisms underlying the protective effects of insulin remain unknown. Insulin is a well-known inhibitor of glycogen synthase kinase-3β (GSK-3β). Here, we investigate the role of GSK-3β inhibition on I/R-induced cerebral injury in a rat model of insulinopenic diabetes

    Prediction of the survival and functional ability of severe stroke patients after ICU therapeutic intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluated the benefits and impact of ICU therapeutic interventions on the survival and functional ability of severe cerebrovascular accident (CVA) patients.</p> <p>Methods</p> <p>Sixty-two ICU patients suffering from severe ischemic/haemorrhagic stroke were evaluated for CVA severity using APACHE II and the Glasgow coma scale (GCS). Survival was determined using Kaplan-Meier survival tables and survival prediction factors were determined by Cox multivariate analysis. Functional ability was assessed using the stroke impact scale (SIS-16) and Karnofsky score. Risk factors, life support techniques and neurosurgical interventions were recorded. One year post-CVA dependency was investigated using multivariate analysis based on linear regression.</p> <p>Results</p> <p>The study cohort constituted 6% of all CVA (37.8% haemorrhagic/62.2% ischemic) admissions. Patient mean(SD) age was 65.8(12.3) years with a 1:1 male: female ratio. During the study period 16 patients had died within the ICU and seven in the year following hospital release.</p> <p>The mean(SD) APACHE II score at hospital admission was 14.9(6.0) and ICU mean duration of stay was 11.2(15.4) days. Mechanical ventilation was required in 37.1% of cases. Risk ratios were; GCS at admission 0.8(0.14), (p = 0.024), APACHE II 1.11(0.11), (p = 0.05) and duration of mechanical ventilation 1.07(0.07), (p = 0.046). Linear coefficients were: type of CVA – haemorrhagic versus ischemic: -18.95(4.58) (p = 0.007), GCS at hospital admission: -6.83(1.08), (p = 0.001), and duration of hospital stay -0.38(0.14), (p = 0.40).</p> <p>Conclusion</p> <p>To ensure a better prognosis CVA patients require ICU therapeutic interventions. However, as we have shown, where tests can determine the worst affected patients with a poor vital and functional outcome should treatment be withheld?</p

    Craniectomy for Malignant Cerebral Infarction: Prevalence and Outcomes in US Hospitals

    Get PDF
    Randomized trials have demonstrated the efficacy of craniectomy for the treatment of malignant cerebral edema following ischemic stroke. We sought to determine the prevalence and outcomes related to this by using a national database.Patient discharges with ischemic stroke as the primary diagnosis undergoing craniectomy were queried from the US Nationwide Inpatient Sample from 1999 to 2008. A subpopulation of patients was identified that underwent thrombolysis. Two primary end points were examined: in-hospital mortality and discharge to home/routine care. To facilitate interpretations, adjusted prevalence was calculated from the overall prevalence and two age-specific logistic regression models. The predictive margin was then generated using a multivariate logistic regression model to estimate the probability of in-hospital mortality after adjustment for admission type, admission source, length of stay, total hospital charges, chronic comorbidities, and medical complications.After excluding 71,996 patients with the diagnosis of intracranial hemorrhage and posterior intracranial circulation occlusion, we identified 4,248,955 adult hospitalizations with ischemic stroke as a primary diagnosis. The estimated rates of hospitalizations in craniectomy per 10,000 hospitalizations with ischemic stroke increased from 3.9 in 1999-2000 to 14.46 in 2007-2008 (p for linear trend<0.001). Patients 60+ years of age had in-hospital mortality of 44% while the 18-59 year old group was found to be 24% (p = 0.14). Outcomes were comparable if recombinant tissue plasminogen activator had been administered.Craniectomy is being increasingly performed for malignant cerebral edema following large territory cerebral ischemia. We suspect that the increase in the annual incidence of DC for malignant cerebral edema is directly related to the expanding collection of evidence in randomized trials that the operation is efficacious when performed in the correct patient population. In hospital mortality is high for all patients undergoing this procedure

    Serum S100B levels after meningioma surgery: A comparison of two laboratory assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100B protein is a potential biomarker of central nervous system insult. This study quantitatively compared two methods for assessing serum concentration of S100B.</p> <p>Methods</p> <p>A prospective, observational study performed in a single tertiary medical center. Included were fifty two consecutive adult patients undergoing surgery for meningioma that provided blood samples for determination of S100B concentrations. Eighty samples (40 pre-operative and 40 postoperative) were randomly selected for batch testing. Each sample was divided into two aliquots. These were analyzed by ELISA (Sangtec) and a commercial kit (Roche Elecsys<sup>®</sup>) for S100B concentrations. Statistical analysis included regression modelling and Bland-Altman analysis.</p> <p>Results</p> <p>A parsimonious linear model best described the prediction of commercial kit values by those determined by ELISA (y = 0.045 + 0.277*x, x = ELISA value, R<sup>2 </sup>= 0.732). ELISA measurements tended to be higher than commercial kit measurements. This discrepancy increased linearly with increasing S100B concentrations. At concentrations above 0.7 μg/L the paired measurements were consistently outside the limits of agreement in the Bland-Altman display. Similar to other studies that used alternative measurement methods, sex and age related differences in serum S100B levels were not detected using the Elecsys<sup>® </sup>(p = 0.643 and 0.728 respectively).</p> <p>Conclusion</p> <p>Although a generally linear relationship exists between serum S100B concentrations measured by ELISA and a commercially available kit, ELISA values tended to be higher than commercial kit measurements particularly at concentrations over 0.7 μg/L, which are suggestive of brain injury. International standardization of commercial kits is required before the predictive validity of S100B for brain damage can be effectively assessed in clinical practice.</p

    Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease

    Get PDF
    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease–associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease
    corecore