135 research outputs found
Quantum-enhanced sensing of axion dark matter with a transmon-based single microwave photon counter
We report an axion dark matter search with a haloscope equipped with a
microwave photon counter. The haloscope is a tunable high quality factor
3-dimensional microwave cavity placed in a magnetic field. The photon counter,
operated cyclically, maps an incoming microwave photon onto the state of a
superconducting transmon qubit. The measurement protocol continuously monitors
the power emitted by the haloscope cavity as well as the dark count background,
and enables tuning of the cavity frequency to probe different axion masses.
With this apparatus we enhance by a factor 20 the search speed that can be
reached with quantum-limited linear amplifiers, and set a new standard for
probing the existence of axions with resonant detectors
Spatially-resolved decoherence of donor spins in silicon strained by a metallic electrode
Electron spins are amongst the most coherent solid-state systems known,
however, to be used in devices for quantum sensing and information processing
applications, they must be typically placed near interfaces. Understanding and
mitigating the impacts of such interfaces on the coherence and spectral
properties of electron spins is critical to realize such applications, but is
also challenging: inferring such data from single-spin studies requires many
measurements to obtain meaningful results, while ensemble measurements
typically give averaged results that hide critical information. Here, we report
a comprehensive study of the coherence of near-surface bismuth donor spins in
28-silicon at millikelvin temperatures. In particular, we use strain-induced
frequency shifts caused by a metallic electrode to make spatial maps of spin
coherence as a function of depth and position relative to the electrode. By
measuring magnetic-field-insensitive clock transitions we separate magnetic
noise caused by surface spins from charge noise. Our results include
quantitative models of the strain-split spin resonance spectra and extraction
of paramagnetic impurity concentrations at the silicon surface. The interplay
of these decoherence mechanisms for such near-surface electron spins is
critical for their application in quantum technologies, while the combination
of the strain splitting and clock transition extends the coherence lifetimes by
up to two orders of magnitude, reaching up to 300 ms at a mean depth of only
100nm. The technique we introduce here to spatially map coherence in
near-surface ensembles is directly applicable to other spin systems of active
interest, such as defects in diamond, silicon carbide, and rare earth ions in
optical crystals.Comment: 16 pages, 11 figure
High-sensitivity AC-charge detection with a MHz-frequency fluxonium qubit
Owing to their strong dipole moment and long coherence times, superconducting
qubits have demonstrated remarkable success in hybrid quantum circuits.
However, most qubit architectures are limited to the GHz frequency range,
severely constraining the class of systems they can interact with. The
fluxonium qubit, on the other hand, can be biased to very low frequency while
being manipulated and read out with standard microwave techniques. Here, we
design and operate a heavy fluxonium with an unprecedentedly low transition
frequency of . We demonstrate resolved sideband cooling of
the ``hot'' qubit transition with a final ground state population of ,
corresponding to an effective temperature of . We further
demonstrate coherent manipulation with coherence times ,
, and single-shot readout of the qubit state.
Importantly, by directly addressing the qubit transition with a capacitively
coupled waveguide, we showcase its high sensitivity to a radio-frequency field.
Through cyclic qubit preparation and interrogation, we transform this
low-frequency fluxonium qubit into a frequency-resolved charge sensor. This
method results in a charge sensitivity of
, or an energy sensitivity (in joules per
hertz) of . This method rivals state-of-the-art transport-based
devices, while maintaining inherent insensitivity to DC charge noise. The high
charge sensitivity combined with large capacitive shunt unlocks new avenues for
exploring quantum phenomena in the range, such as the
strong-coupling regime with a resonant macroscopic mechanical resonator
Circulating senescent myeloid cells drive blood brain barrier breakdown and neurodegeneration
Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing MAPK activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some patients with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we show that LCH-ND is caused by myeloid cells that are clonal with peripheral LCH cells. We discovered that circulating BRAF V600E myeloid cells cause the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiate into senescent, inflammatory CD11a macrophages that accumulate in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent novel and targetable mechanisms of ND
Quantum dynamics of simultaneously measured non-commuting observables.
In quantum mechanics, measurements cause wavefunction collapse that yields precise outcomes, whereas for non-commuting observables such as position and momentum Heisenberg's uncertainty principle limits the intrinsic precision of a state. Although theoretical work has demonstrated that it should be possible to perform simultaneous non-commuting measurements and has revealed the limits on measurement outcomes, only recently has the dynamics of the quantum state been discussed. To realize this unexplored regime, we simultaneously apply two continuous quantum non-demolition probes of non-commuting observables to a superconducting qubit. We implement multiple readout channels by coupling the qubit to multiple modes of a cavity. To control the measurement observables, we implement a 'single quadrature' measurement by driving the qubit and applying cavity sidebands with a relative phase that sets the observable. Here, we use this approach to show that the uncertainty principle governs the dynamics of the wavefunction by enforcing a lower bound on the measurement-induced disturbance. Consequently, as we transition from measuring identical to measuring non-commuting observables, the dynamics make a smooth transition from standard wavefunction collapse to localized persistent diffusion and then to isotropic persistent diffusion. Although the evolution of the state differs markedly from that of a conventional measurement, information about both non-commuting observables is extracted by keeping track of the time ordering of the measurement record, enabling quantum state tomography without alternating measurements. Our work creates novel capabilities for quantum control, including rapid state purification, adaptive measurement, measurement-based state steering and continuous quantum error correction. As physical systems often interact continuously with their environment via non-commuting degrees of freedom, our work offers a way to study how notions of contemporary quantum foundations arise in such settings
Towards universal quantum computation through relativistic motion
We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tuneable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes
Participant Reactions to Two-Way Immersion (TWI) Programs
The purpose of this study was to elicit participant reactions to two-way immersion (TWI) programs in the United States of America. A large number of recent studies have focused on instructor views and perspectives of two-way immersion programs, so this study aimed to gain insight from students who are, or who have, participated in TWI programs throughout North America.
One hundred fifty-one TWI schools throughout the United States were contacted and asked to participate in this study. Two similar surveys were developed, one for current TWI students, and another for former TWI students. Students from these two groups were asked to fill out a confidential online survey that addressed specific linguistic skills, abilities, and preferences, as well as connection to the cultures of the target language. Forty-eight percent of the survey respondents were native speakers of English, and the remaining 52% were non-native speakers of English. The number of respondents to the former student survey was so low that the data were inconclusive, and, therefore, will not be included in this study.
Since the survey was conducted online, the data were stored in a comma-delimited format for further evaluation. The data were then tallied and analyzed for common themes
Controlling the dynamic range of a Josephson parametric amplifier
One of the central challenges in the development of parametric amplifiers is
the control of the dynamic range relative to its gain and bandwidth, which
typically limits quantum limited amplification to signals which contain only a
few photons per inverse bandwidth. Here, we discuss the control of the dynamic
range of Josephson parametric amplifiers by using Josephson junction arrays. We
discuss gain, bandwidth, noise, and dynamic range properties of both a
transmission line and a lumped element based parametric amplifier. Based on
these investigations we derive useful design criteria, which may find broad
application in the development of practical parametric amplifiers.Comment: 10 pages, 7 figure
The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes
- …