99 research outputs found

    Oceanographic Profiling and Spectroradiometer Observations from the MOCE-2 Cruise: 28 March to 14 April 1993

    Get PDF
    This report contains results from the second cruise of the Modis Optical Characterization Experiment (MOCE). Data presented here were obtained on the Mexican Research Vessel El Puma between 29 March and 13 April along the Pacific coast of Baja California and in the Gulf of California. Three types of data are reported: high spectral resolution radiometry at three depths for 13 stations; salinity, temperature beam attenuation and chlorophyll-a fluorescence, profiles at the same stations; and total suspended matter and suspended organic carbon and nitrogen.(PDF is 90 pages.

    Oceanographic Profiling Observations from the MOCE-3 Cruise: 27 October to 15 November 1994

    Get PDF
    This report contains results from the third cruise of the Marine Optical Characterization Experiment (Fig. 1). A variety of spectroradiometric observations of the upper water column and atmosphere were made by investigators from the University of Miami, NOAA, CHORS and MLML. Data presented here were obtained by oceanographic CTD profiler: salinity, temperatllre, dissolved oxygen, beam attenuation and chlorophyll-a fluorescence; and by water samplers: total suspended matter and suspended organic carbon and nitrogen, salinity, and dissolved oxygen

    Shipboard Techniques for Oceanographic Observations

    Get PDF
    This report gives the details of water sampling methods and chemical analyses used during MLML participation in the EOS MODIS investigations. It is intended to be used as a reference manual for those engaged in shipboard work. (PDF contains 50 pages

    THE RESPONSE OF MONTEREY BAY TO THE 2010 CHILEAN EARTHQUAKE

    Get PDF
    The primary frequencies contained in the arrival sequence produced by the tsunami from the Chilean earthquake of 2010 in Monterey Bay were extracted to determine the seiche modes that were produced. Singular Spectrum Analysis (SSA) and Ensemble Empirical Mode Decomposition (EEMD) were employed to extract the primary frequencies of interest. The wave train from the Chilean tsunami lasted for at least four days due to multipath arrivals that may not have included reflections from outside the bay but most likely did include secondary undulations, and energy trapping in the form of edge waves, inside the bay. The SSA decomposition resolved oscillations with periods of 52-57, 34-35, 26-27, and 21-22 minutes, all frequencies that have been predicted and/or observed in previous studies. The EEMD decomposition detected oscillations with periods of 50-55 and 21-22 minutes. Periods in the range of 50-57 minutes varied due to measurement uncertainties but almost certainly correspond to the first longitudinal mode of oscillation for Monterey Bay, periods of 34-35 minutes correspond to the first transverse mode of oscillation that assumes a nodal line across the entrance of the bay, a period of 26- 27 minutes, although previously observed, may not represent a fundamental oscillation, and a period of 21-22 minutes has been predicted and observed previously. A period of ~37 minutes, close to the period of 34-35 minutes, was generated by the Great Alaskan Earthquake of 1964 in Monterey Bay and most likely represents the same mode of oscillation. The tsunamis associated with the Great Alaskan Earthquake and the Chilean Earthquake both entered Monterey Bay but initially arrived outside the bay from opposite directions. Unlike the Great Alaskan Earthquake, however, which excited only one resonant mode inside the bay, the Chilean Earthquake excited several modes suggesting that the asymmetric shape of the entrance to Monterey Bay was an important factor and that the directions of the incoming tsunami-generated waves were most likely different

    Daily MOBY Data Processing

    Get PDF
    (PDF contains 57 pages

    Oceanographic Profiling Observations from the MOBY-L7 Cruise: 25 to 30 June 1994

    Get PDF
    This report contains CTD profiling results from the seventh cruise to the Marine Optics Buoy (MOBY) site near the Island of Lanai. Data presented here were obtained on the University of Hawaii Research Vessel Moana Wave between 26 and 30 June 1994. Two types of data are reported: vertical profile observations of salinity, temperature beam attenuation and chlorophyll-a fluorescence, profiles; and total suspended matter and suspended organic carbon and nitrogen taken from water samplers at those stations

    Convergent genes shape budding yeast pericentromeres

    Get PDF
    The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function

    Разработка бизнес-плана как основа подготовки конкурентоспособного специалиста

    Get PDF
    Objective: The aim was to investigate the time course of lower limb disease activity and walking disability in children with JIA over a 5-year course. Methods: The Childhood Arthritis Prospective Study is a longitudinal study of children with a new JIA diagnosis. Childhood Arthritis Prospective Study data include demographics and core outcome variables at baseline, 6 months and yearly thereafter. Prevalence and transition rates from baseline to 5 years were obtained for active and limited joint counts at the hip, knee, ankle and foot joints; and walking disability, measured using the Childhood Health Assessment Questionnaire walking subscale. Missing data were accounted for using multiple imputation. Results: A total of 1041 children (64% female), with a median age of 7.7 years at first visit, were included. Baseline knee and ankle synovitis prevalence was 71 and 34%, respectively, decreasing to 8-20 and 6-12%, respectively, after 1 year. Baseline hip and foot synovitis prevalence was <11%, decreasing to <5% after 6 months. At least mild walking disability was present in 52% at baseline, stabilizing at 25-30% after 1 year. Conclusion: Lower limb synovitis and walking disability are relatively common around the time of initial presentation in children and young people with JIA. Mild to moderate walking disability persisted in ∼25% of patients for the duration of the study, despite a significant reduction in the frequency of lower limb synovitis. This suggests that there is an unmet need for non-medical strategies designed to prevent and/or resolve persistent walking disability in JIA

    Creative destruction in science

    Get PDF
    Drawing on the concept of a gale of creative destruction in a capitalistic economy, we argue that initiatives to assess the robustness of findings in the organizational literature should aim to simultaneously test competing ideas operating in the same theoretical space. In other words, replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power. Achieving this will typically require adding new measures, conditions, and subject populations to research designs, in order to carry out conceptual tests of multiple theories in addition to directly replicating the original findings. To illustrate the value of the creative destruction approach for theory pruning in organizational scholarship, we describe recent replication initiatives re-examining culture and work morality, working parents\u2019 reasoning about day care options, and gender discrimination in hiring decisions. Significance statement It is becoming increasingly clear that many, if not most, published research findings across scientific fields are not readily replicable when the same method is repeated. Although extremely valuable, failed replications risk leaving a theoretical void\u2014 reducing confidence the original theoretical prediction is true, but not replacing it with positive evidence in favor of an alternative theory. We introduce the creative destruction approach to replication, which combines theory pruning methods from the field of management with emerging best practices from the open science movement, with the aim of making replications as generative as possible. In effect, we advocate for a Replication 2.0 movement in which the goal shifts from checking on the reliability of past findings to actively engaging in competitive theory testing and theory building. Scientific transparency statement The materials, code, and data for this article are posted publicly on the Open Science Framework, with links provided in the article
    corecore