217 research outputs found
How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
The development of accurate water quality modeling tools is necessary for integrated water quality management of river systems. Even though some water quality models can simulate dissolved oxygen (DO) concentrations accurately during high-flow periods and phytoplankton blooms in rivers, significant discrepancies remain during low-flow periods, when the dilution capacity of the rivers is reduced. We use the C-RIVE biogeochemical model to evaluate the influence of controlling parameters on DO simulations at low flow. Based on a coarse model pre-analysis, three sensitivity analyses (SAs) are carried out using the Sobol method. The parameters studied are related to bacterial community (e.g., bacterial growth rate), organic matter (OM; partitioning and degradation of OM into constituent fractions), and physical factors (e.g., reoxygenation of the river due to navigation and wind). Bacterial growth and mortality rates are found to be by far the two most influential parameters, followed by bacterial growth yield. More refined SA results indicate that the biodegradable fraction of dissolved organic matter (BDOM) and the bacterial growth yield are the most influential parameters under conditions of a high net bacterial growth rate (= growth rate − mortality rate), while bacterial growth yield is independently dominant in low net growth situations. Based on the results of this study, proposals are made for in situ measurement of BDOM under an urban area water quality monitoring network that provides high-frequency data. The results also indicate the need for bacterial community monitoring in order to detect potential bacterial community shifts after transient events such as combined sewer overflows and modifications in internal processes of treatment plants. Furthermore, we discuss the inclusion of BDOM in statistical water quality modeling software for improvement in the estimation of organic matter inflow from boundary conditions.</p
Energy and force analysis of Ti-6Al-4V linear friction welds for computational modeling input and validation data
The linear friction welding (LFW) process is finding increasing use as a manufacturing technology for the production of titanium alloy Ti-6Al-4V aerospace components. Computational models give an insight into the process, however, there is limited experimental data that can be used for either modeling inputs or validation. To address this problem, a design of experiments approach was used to investigate the influence of the LFW process inputs on various outputs for experimental Ti-6Al-4V welds. The finite element analysis software DEFORM was also used in conjunction with the experimental findings to investigate the heating of the workpieces. Key findings showed that the average interface force and coefficient of friction during each phase of the process were insensitive to the rubbing velocity; the coefficient of friction was not coulombic and varied between 0.3 and 1.3 depending on the process conditions; and the interface of the workpieces reached a temperature of approximately approximately 1273 K (1000 °C) at the end of phase 1. This work has enabled a greater insight into the underlying process physics and will aid future modeling investigations.EPSRC, Boeing Company, Welding Institut
Electron and hole g-factors and spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells
We address spin properties and spin dynamics of carriers and charged excitons
in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies
are performed by time-resolved and polarization-resolved photoluminescence,
spin-flip Raman scattering and picosecond pump-probe Faraday rotation in
magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets
are negatively charged so that their photoluminescence is dominated by
radiative recombination of negatively charged excitons (trions). Electron
g-factor of 1.68 is measured and heavy-hole g-factor varying with increasing
magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for
two-dimensional structures are calculated for various hole confining potentials
for cubic- and wurtzite lattice in CdSe core. These calculations are extended
for various quantum dots and nanoplatelets based on II-VI semiconductors. We
developed a magneto-optical technique for the quantitative evaluation of the
nanoplatelets orientation in ensemble
Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions
Malaria remains a global health problem, and though international efforts for treatment and eradication have made some headway, the emergence of drug-resistant parasites threatens this progress. Antimalarial therapeutics acting via novel mechanisms are urgently required. P. falciparum M1 and M17 are neutral aminopeptidases which are essential for parasite growth and development. Previous work in our group has identified inhibitors capable of dual inhibition of PfA-M1 and PfA-M17, and revealed further regions within the protease S1 pockets that could be exploited in the development of ligands with improved inhibitory activity. Herein, we report the structure-based design and synthesis of novel hydroxamic acid analogues that are capable of potent inhibition of both PfA-M1 and PfA-M17. Furthermore, the developed compounds potently inhibit Pf growth in culture, including the multi-drug resistant strain Dd2. The ongoing development of dual PfA-M1/PfA-M17 inhibitors continues to be an attractive strategy for the design of novel antimalarial therapeutics
Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial
Objective: Assess ustekinumab efficacy (week 24/week 52) and safety (week 16/week 24/week 60) in patients with active psoriatic arthritis (PsA) despite treatment with conventional and/or biological anti-tumour necrosis factor (TNF) agents.
Methods: In this phase 3, multicentre, placebo-controlled trial, 312 adults with active PsA were randomised (stratified by site, weight (≤100 kg/>100 kg), methotrexate use) to ustekinumab 45 mg or 90 mg at week 0, week 4, q12 weeks or placebo at week 0, week 4, week 16 and crossover to ustekinumab 45 mg at week 24, week 28 and week 40. At week 16, patients with <5% improvement in tender/swollen joint counts entered blinded early escape (placebo→45 mg, 45 mg→90 mg, 90 mg→90 mg). The primary endpoint was ≥20% improvement in American College of Rheumatology (ACR20) criteria at week 24. Secondary endpoints included week 24 Health Assessment Questionnaire-Disability Index (HAQ-DI) improvement, ACR50, ACR70 and ≥75% improvement in Psoriasis Area and Severity Index (PASI75). Efficacy was assessed in all patients, anti-TNF-naïve (n=132) patients and anti-TNF-experienced (n=180) patients.
Results: More ustekinumab-treated (43.8% combined) than placebo-treated (20.2%) patients achieved ACR20 at week 24 (p<0.001). Significant treatment differences were observed for week 24 HAQ-DI improvement (p<0.001), ACR50 (p≤0.05) and PASI75 (p<0.001); all benefits were sustained through week 52. Among patients previously treated with ≥1 TNF inhibitor, sustained ustekinumab efficacy was also observed (week 24 combined vs placebo: ACR20 35.6% vs 14.5%, PASI75 47.1% vs 2.0%, median HAQ-DI change −0.13 vs 0.0; week 52 ustekinumab-treated: ACR20 38.9%, PASI75 43.4%, median HAQ-DI change −0.13). No unexpected adverse events were observed through week 60.
Conclusions: The interleukin-12/23 inhibitor ustekinumab (45/90 mg q12 weeks) yielded significant and sustained improvements in PsA signs/symptoms in a diverse population of patients with active PsA, including anti-TNF-experienced PsA patients
Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors
Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics
In Antisynthetase Syndrome, ACPA Are Associated With Severe and Erosive Arthritis: An Overlapping Rheumatoid Arthritis and Antisynthetase Syndrome
International audienceAbstract: Anticitrullinated peptide/protein antibodies (ACPA), which are highly specific for rheumatoid arthritis (RA), may be found in some patients with other systemic autoimmune diseases. The clinical significance of ACPA in patients with antisynthetase syndrome (ASS), a systemic disease characterized by the association of myositis, interstitial lung disease, polyarthralgia, and/or polyarthritis, has not yet been evaluated with regard to phenotype, prognosis, and response to treatment. ACPA-positive ASS patients were first identified among a French multicenter registry of patients with ASS. Additionally, all French rheumatology and internal medicine practitioners registered on the Club Rhumatismes et Inflammation web site were asked to report their observations of ASS patients with ACPA. The 17 collected patients were retrospectively studied using a standardized questionnaire and compared with 34 unselected ACPA-negative ASS patients in a case–control study. All ACPA-positive ASS patients suffered from arthritis versus 41% in the control group (P 7-year mean follow-up, extra-articular outcomes and survival were not different. ACPA-positive ASS patients showed an overlapping RA–ASS syndrome, were at high risk of refractory erosive arthritis, and might experience ASS flare when treated with antitumor necrosis factor drugs. In contrast, other biologics such as anti-CD20 mAb were effective in this context, without worsening systemic involvements
Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum
Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-malaria drugs.To define the substrate specificity of recombinant forms of these two malaria aminopeptidases we used a new library consisting of 61 fluorogenic substrates derived both from natural and unnatural amino acids. We obtained a detailed substrate fingerprint for recombinant forms of the enzymes revealing that PfM1AAP exhibits a very broad substrate tolerance, capable of efficiently hydrolyzing neutral and basic amino acids, while PfM17LAP has narrower substrate specificity and preferentially cleaves bulky, hydrophobic amino acids. The substrate library was also exploited to profile the activity of the native aminopeptidases in soluble cell lysates of P. falciparum malaria.This data showed that PfM1AAP and PfM17LAP are responsible for majority of the aminopeptidase activity in these extracts. These studies provide specific substrate and mechanistic information important for understanding the function of these aminopeptidases and could be exploited in the design of new inhibitors to specifically target these for anti-malaria treatment
- …