214 research outputs found

    Modelling the influence of the process inputs on the removal of surface contaminants from Ti-6Al-4V linear friction welds

    Get PDF
    The linear friction welding (LFW) process is finding increasing interest from industry for the fabrication of near-net-shape, titanium alloy Ti–6Al–4V, aerospace components. Currently, the removal of surface contaminants, such as oxides and foreign particles, from the weld interface into the flash is not fully understood. To address this problem, two-dimensional (2D) computational models were developed using the finite element analysis (FEA) software DEFORM and validated with experiments. The key findings showed that the welds made with higher applied forces required less burn-off to completely remove the surface contaminants from the interface into the flash; the interface temperature increased as the applied force was decreased or the rubbing velocity increased; and the boundary temperature between the rapid flash formation and negligible material flow was approximately 970 °C. An understanding of these phenomena is of particular interest for the industrialisation of near-net-shape titanium alloy aerospace components.EPSRC, Boeing Company, Welding Institut

    Modelling of the workpiece geometry effects on Ti–6Al–4V linear friction welds

    Get PDF
    Linear friction welding (LFW) is a solid-state joining process that is finding increasing interest from industry for the fabrication of titanium alloy (Ti–6Al–4V) preforms. Currently, the effects of the workpiece geometry on the thermal fields, material flow and interface contaminant removal during processing are not fully understood. To address this problem, two-dimensional (2D) computational models were developed using the finite element analysis (FEA) software DEFORM and validated with experiments. A key finding was that the width of the workpieces in the direction of oscillation (in-plane width) had a much greater effect on the experimental weld outputs than the cross-sectional area. According to the validated models, a decrease of the in-plane width increased the burn-off rate whilst decreasing the interface temperature, TMAZ thickness and the burn-off required to remove the interface contaminants from the weld into the flash. Furthermore, the experimental weld interface consisted of a Widmanstätten microstructure, which became finer as the in-plane width was reduced. These findings have significant, practical benefits and may aid industrialisation of the LFW process.The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC), The Boeing Company and The Welding Institute (TWI) for funding the research presented in this paper

    Statistical analysis of matrimonial behaviour

    Get PDF
    A better understanding of matrimonial behaviour in France is a first step to study the impact of family histories on global fecondity or the interactions between family behaviour and economic choices (labor supply, saving, housing, ...). The purpose of this paper is to describe such behaviours and their recent evolutions using the « French Fertility and Family Survey » (FFS) launched by INSEE and INED in 1994 and the time series of cross-sections of the French Employment Surveys. The main results are the following. Until age 27, people are more likely to start a first union than get married. Furthermore, recent unions are more fragile than marriages. If the behaviours observed in the 1990's do not change, 50% of the unions would finally break up. Before the age of 50, new unions do not compensate the dissolutions. Hence, whatever the age, the propensity to be involved in a union should decrease over time. The estimation of parametric and semiparametric models of the union duration and of the duration between a dissolution and a new union underlines the importance of several individual characteristics to explain matrimonial behaviour.matrimonial behaviour, duration model

    Energy and force analysis of Ti-6Al-4V linear friction welds for computational modeling input and validation data

    Get PDF
    The linear friction welding (LFW) process is finding increasing use as a manufacturing technology for the production of titanium alloy Ti-6Al-4V aerospace components. Computational models give an insight into the process, however, there is limited experimental data that can be used for either modeling inputs or validation. To address this problem, a design of experiments approach was used to investigate the influence of the LFW process inputs on various outputs for experimental Ti-6Al-4V welds. The finite element analysis software DEFORM was also used in conjunction with the experimental findings to investigate the heating of the workpieces. Key findings showed that the average interface force and coefficient of friction during each phase of the process were insensitive to the rubbing velocity; the coefficient of friction was not coulombic and varied between 0.3 and 1.3 depending on the process conditions; and the interface of the workpieces reached a temperature of approximately approximately 1273 K (1000 °C) at the end of phase 1. This work has enabled a greater insight into the underlying process physics and will aid future modeling investigations.EPSRC, Boeing Company, Welding Institut

    A literature review of Ti-6Al-4V linear friction welding

    Get PDF
    Linear friction welding (LFW) is a solid-state joining process that is an established technology for the fabrication of titanium alloy bladed disks (blisks) in aero-engines. Owing to the economic benefits, LFW has been identified as a technology capable of manufacturing Ti-6Al-4V aircraft structural components. However, LFW of Ti-6Al-4V has seen limited industrial implementation outside of blisk manufacture, which is partly due to the knowledge and benefits of the process being widely unknown. This article provides a review of the published works up-to-date on the subject to identify the “state-of-the-art”. First, the background, fundamentals, advantages and industrial applications of the process are described. This is followed by a description of the microstructure, mechanical properties, flash morphology, interface contaminant removal, residual stresses and energy usage of Ti-6Al-4V linear friction welds. A brief discussion on the machine tooling effects is also included. Next, the work on analytical and numerical modelling is discussed. Finally, the conclusions of the review are presented, which include practical implications for the manufacturing sector and recommendations for further research and development. The purpose of this article is to inform industry and academia of the benefits of LFW so that the process may be better exploited

    Electron and hole g-factors and spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells

    Full text link
    We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble

    Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions

    Get PDF
    Malaria remains a global health problem, and though international efforts for treatment and eradication have made some headway, the emergence of drug-resistant parasites threatens this progress. Antimalarial therapeutics acting via novel mechanisms are urgently required. P. falciparum M1 and M17 are neutral aminopeptidases which are essential for parasite growth and development. Previous work in our group has identified inhibitors capable of dual inhibition of PfA-M1 and PfA-M17, and revealed further regions within the protease S1 pockets that could be exploited in the development of ligands with improved inhibitory activity. Herein, we report the structure-based design and synthesis of novel hydroxamic acid analogues that are capable of potent inhibition of both PfA-M1 and PfA-M17. Furthermore, the developed compounds potently inhibit Pf growth in culture, including the multi-drug resistant strain Dd2. The ongoing development of dual PfA-M1/PfA-M17 inhibitors continues to be an attractive strategy for the design of novel antimalarial therapeutics

    Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial

    Get PDF
    Objective: Assess ustekinumab efficacy (week 24/week 52) and safety (week 16/week 24/week 60) in patients with active psoriatic arthritis (PsA) despite treatment with conventional and/or biological anti-tumour necrosis factor (TNF) agents. Methods: In this phase 3, multicentre, placebo-controlled trial, 312 adults with active PsA were randomised (stratified by site, weight (≤100 kg/>100 kg), methotrexate use) to ustekinumab 45 mg or 90 mg at week 0, week 4, q12 weeks or placebo at week 0, week 4, week 16 and crossover to ustekinumab 45 mg at week 24, week 28 and week 40. At week 16, patients with <5% improvement in tender/swollen joint counts entered blinded early escape (placebo→45 mg, 45 mg→90 mg, 90 mg→90 mg). The primary endpoint was ≥20% improvement in American College of Rheumatology (ACR20) criteria at week 24. Secondary endpoints included week 24 Health Assessment Questionnaire-Disability Index (HAQ-DI) improvement, ACR50, ACR70 and ≥75% improvement in Psoriasis Area and Severity Index (PASI75). Efficacy was assessed in all patients, anti-TNF-naïve (n=132) patients and anti-TNF-experienced (n=180) patients. Results: More ustekinumab-treated (43.8% combined) than placebo-treated (20.2%) patients achieved ACR20 at week 24 (p<0.001). Significant treatment differences were observed for week 24 HAQ-DI improvement (p<0.001), ACR50 (p≤0.05) and PASI75 (p<0.001); all benefits were sustained through week 52. Among patients previously treated with ≥1 TNF inhibitor, sustained ustekinumab efficacy was also observed (week 24 combined vs placebo: ACR20 35.6% vs 14.5%, PASI75 47.1% vs 2.0%, median HAQ-DI change −0.13 vs 0.0; week 52 ustekinumab-treated: ACR20 38.9%, PASI75 43.4%, median HAQ-DI change −0.13). No unexpected adverse events were observed through week 60. Conclusions: The interleukin-12/23 inhibitor ustekinumab (45/90 mg q12 weeks) yielded significant and sustained improvements in PsA signs/symptoms in a diverse population of patients with active PsA, including anti-TNF-experienced PsA patients
    corecore