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The linear friction welding (LFW) process is finding increasing interest from industry for the fabrication of
near-net-shape, titanium alloy Ti–6Al–4V, aerospace components. Currently, the removal of surface con-
taminants, such as oxides and foreign particles, from the weld interface into the flash is not fully under-
stood. To address this problem, two-dimensional (2D) computational models were developed using the
finite element analysis (FEA) software DEFORM and validated with experiments. The key findings showed
that the welds made with higher applied forces required less burn-off to completely remove the surface
contaminants from the interface into the flash; the interface temperature increased as the applied force
was decreased or the rubbing velocity increased; and the boundary temperature between the rapid flash
formation and negligible material flow was approximately 970 �C. An understanding of these phenomena
is of particular interest for the industrialisation of near-net-shape titanium alloy aerospace components.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Linear friction welding (LFW) is a solid-state joining process
that is used for the fabrication of near-net-shape, titanium alloy
Ti–6Al–4V, aerospace components [1,2]. This is primarily due to
the significant cost savings can be achieved when compared to
other manufacturing techniques [2,3]. The process also offers many
advantages over traditional fusion welding methods [2,3], includ-
ing excellent mechanical properties, avoidance of melting and very
low defect rates.

During LFW one workpiece is oscillated relative to another
whilst under a compressive force. Despite being one continuous
process, LFW is said to occur over four [4–6] phases:

� Phase 1 – initial phase. Contact exists between asperities on the
two surfaces to be joined and heat is generated due to friction –
see Fig. 1(a). The asperities soften and deform, increasing the
true area of contact between the workpieces. Negligible axial
shortening (burn-off) perpendicular to the direction of oscilla-
tion is observed during this phase.
� Phase 2 – transition phase. The material plasticises and

becomes highly viscous causing the true area of contact to
increase to 100% of the cross-sectional area – see Fig. 1(b).
The heat conducts back from the interface plasticising more
material and the burn-off begins to occur due to viscous
material expulsion.
� Phase 3 – equilibrium phase. The interface force, thermal profile

and burn-off rate reach a quasi-steady-state condition and sig-
nificant burn-off occurs through the rapid expulsion of viscous
material from the interface.
� Phase 4 – deceleration phase. The relative motion is ceased and

the workpieces are aligned. In some applications an additional
forging force may also be applied.

Despite the benefits, LFW has experienced limited industrial
implementation. One of the reasons for this is due to a lack of funda-
mental scientific understanding [7]. The rapid nature of the process
and the fact that the interface of the workpieces cannot be observed
during welding particularly inhibits increased understanding. Com-
putational models offer a pragmatic method to understand what is
happening during the rapidly evolving process. Various authors
have developed two [1,6–16] and three [15,17–25] dimensional
(2D/3D) computational models. These models have been used to
predict various weld responses, such as: residual stress formation
[11,13], strain rates [1], flash morphology [1,12], flash formation
rates [1,8,9,12,19], thermal fields [1,6,8–12,14,17,19–21,25] and
microstructural evolution [23]. Although the 2D models do not
model the material expulsion perpendicular to the direction of
oscillation they do provide a good insight into the process without
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Fig. 1. Key stages of the linear friction welding process: (a) asperity interaction
(sliding friction) and (b) viscous material flow (sticking friction).

Fig. 2. Modelling approaches: (a) two workpieces, (b) one workpiece and a non-
deformable object, and (c) a single body representing two workpieces.
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requiring the heavy computational times of the 3D models.
According to the reviewed literature, there are three main
approaches that may be taken when finite element modelling the
LFW process [1,6–25], which are illustrated in Fig. 2.

The first approach [8,13,17,19–21,23,24] involves modelling the
two workpieces as individual objects, as shown in Fig. 2(a). This
allows the entire process to be modelled. However, the problem
with this approach is that the coefficients of friction need to be
known so that the thermal aspects of the model during phase 1
can be replicated accurately. Also, models of this type show that
the two workpieces never truly merge – as happens in reality for
many materials [2,26,27] – meaning that the mechanical mixing
of the separate workpieces is not considered. The second approach
[7,9,10,14–16,18,22,25] is to model only one workpiece, which is
oscillated against a non-deformable surface, as shown in
Fig. 2(b). This approach allows for quicker computational times
as only half of the geometry is modelled. Many of the problems
with this approach are the same as the first. The third approach
[1,11,12], as shown in Fig. 2(c), was developed by Turner et al.
[1], who noticed that prior to sticking friction taking place there
is negligible macroscopic plastic deformation, at least for the tita-
nium alloy Ti–6Al–4V. Once sticking friction begins the process
may be modelled as a single body due to there being approxi-
mately 100% true interface contact. A temperature profile needs
to be mapped onto the single body model to account for the heat
generated during sliding friction. The high temperature at the weld
interface allows the material at the centre of the model to be highly
viscous, thus allowing the single body to represent two individual
workpieces. Due to the adhesion of the interface material being
modelled this approach considers the mechanical mixing of the
separate workpieces and produces much better replications of
the flash morphology for Ti–6Al–4V workpieces [1,12]. The limita-
tion of this approach is that the stages prior to sticking friction
occurring are not modelled.

Surface contaminants, such as oxides and foreign particles, at
the weld interface affect the properties [26,28] and possibly the
service life of a weld [1]. Oxides are generated during phase 1
when the hot interface material reacts with the atmosphere [29].
It is also possible that some surface oxides may remain at the inter-
face due to insufficient pre-weld cleaning. The foreign particles
may constitute oil or grease from workpiece machining which
were also not removed during pre-weld cleaning. At the start of
phase 2 the contaminants become trapped at the interface during
adhesion of the viscous material. Many authors suggest that a weld
is likely to be free from contaminants if all of the initial contacting
interface material is expelled into the flash [28,30–32]. Wanjara
and Jahazi [26] have shown that for the same burn-off distance,
contaminants were present at the interface if lower values of fre-
quency, amplitude and applied force were used, whereas if higher
values were used the interface was free from surface contaminants.
Therefore surface contaminant removal appears to be critically
dependent on the combination of process inputs used. However,
the reasons why the process inputs affect surface contaminant
removal are not understood. According to Grujicic et al. [23] exces-
sive burn-off to facilitate the removal of the surface contaminants
leads to a loss of material and productivity, which ultimately
increases industrial costs. Therefore there is an industrial need to
understand the mechanisms behind surface contaminant removal
to increase safety and reduce costs. Models are able to give an
insight into the material expulsion and thus the likelihood of con-
taminants existing in a real weld [1]. The primary purpose of this
paper is to use experimentally validated models to investigate
the process input effects on the thermal fields, material flow and
surface contaminant removal during the linear friction welding
of Ti–6Al–4V workpieces.
2. Methodology

2.1. Experimental details

Previous work by the authors [6] detailed how Design Expert
V.7, a design of experiments (DOE) software package, was used
to determine a set of experiments to relate the main process inputs
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(amplitude, frequency, applied force and burn-off) to the process
outputs, such as the power input, coefficient of friction and inter-
face force generated over a phase for Ti–6Al–4V workpieces with
the dimensions shown in Fig. 3(a). The experimental design was
specified to include enough design points to account for a
quadratic relationship between the inputs and outputs since this
behaviour has been observed in the literature [3,26]. Some of the
experiments were repeated to test the variance giving 25 experi-
mental conditions for the DOE analysis, which are listed (welds
1–25) in Table 1. This experimental run was also used in this paper.

Four experiments were also completed using thermocouples
(welds 26–29). To insert the k-type thermocouples several work-
pieces had four 1.2 mm diameter holes drilled through them
perpendicularly to the oscillation direction and parallel to the
direction of the applied force at the positions shown in Fig. 3(b).
To position the thermocouples at distances of 0.3 mm, 1 mm,
2.5 mm and 4.5 mm from the weld interface a plug was placed into
the holes at the interface end of the workpiece. The thermocouple
wire was inserted through the opposite end until it made contact
with the plug, the thermocouples where then fixed into position
using an epoxy resin.

Finally, a few additional experiments were also completed to
investigate how the burn-off affected surface contaminant removal
from the interface for the geometry in Fig. 3(a). Four different com-
binations of frequency, amplitude and applied force were used
with burn-off values of 0.5 mm, 1 mm and 3 mm. These combina-
tions are listed (welds 30–41) in Table 1. Unlike the previous
experiments [6], these were not cleaned with acetone prior to
welding to facilitate clearer observation of the surface contaminant
removal in the post weld analysis. All of the detailed experiments;
which were completed using the FW34 LFW machine at TWI, Cam-
bridge; were used to provide validation for the models developed
in this paper.

Metallographic specimens were produced from experiments
30–41 in Table 1 in accordance with the plane shown in Fig. 3(a),
i.e. they were sectioned and polished so that the centre of the weld
may be viewed in the direction of oscillation. The sectioned sam-
ples were placed into a cold resin and then ground down using
the following grit silicon carbide papers: 240, 1200, 2500 and
4000. After grinding the sectioned samples were polished using
colloidal silica polish on a micro-cloth and etched using hydroflu-
oric acid. The metallographic samples were viewed under a refrac-
tive microscope to determine the extent of the observable TMAZ at
the centre of the weld (i.e. the distance from one TMAZ/parent
Fig. 3. (a) Experimental workpiece dimensions and location of the sectioning plane (note
positions (dimensions are in millimetres).
material boundary to the other) and the thickness of the flash at
the point of exit of the weld, as shown in Fig. 4(a) and (b),
respectively. Furthermore the samples were also inspected to see
if surface contaminants could be observed.

The total energy inputted to the weld interface for a phase, Ex,
may be estimated [6,31] by integrating the power with respect to
time:

Ex ¼
Z T

0
Fintvdt ð1Þ

where T is the total duration of the phase, v is the velocity and Fint is
the interface force at a specific point in time during a sinusoidal
cycle. As with previous work [6], the experimental output data from
the FW34 LFW machine was used to determine these values.

To determine the average power input generated over a phase,
the integrated energy input for that phase was divided by the
phase duration. The average interface force generated over a phase
was also recorded, this allowed for an investigation into the effects
of the surface contaminant layer on the flow behaviour of the
welds.

2.2. Development of a numerical model

Accurate prediction of the material flow was of primary con-
cern; consequently modelling approach 3, as illustrated in
Fig. 2(c), was used. This involved modelling the process as two dis-
tinct stages. The first stage used a purely thermal model to repli-
cate the heating of the workpieces during phase 1 and the
second stage used a plastic flow model to account for the material
flow during phases 2 and 3.

The same design of experiments approach previously reported
(welds 1–25 in Table 1) was used for the modelling work in this
paper, however, only 16 plastic flow models were required to cover
the 25 design points since a single plastic flow model can describe
multiple burn-off values for the same combination of frequency,
amplitude and applied force. All of the plastic flow models were
run to a burn-off of 3 mm and the process history was evaluated
at the shorter burn-off values for the design points of interest.
The development of the thermal models to account for the phase
1 heating is reported by the authors elsewhere [6] (although the
general concepts are discussed in Section 2.2.1).

As previously stated, 3D models require substantially more time
to solve than their 2D counterparts: approximately 4 weeks
compared to 12 h for the geometry and conditions of interest in
that 60 mm represents the height of a single workpiece), and (b) thermocouple hole



Table 1
Experimental conditions.

Weld Frequency (Hz) Amplitude (mm) Force (kN) Burn-off (mm) Purpose

1 50 2.7 66 1 DOE
2 70 1 100 3 DOE
3 20 2.7 100 3 DOE
4 70 1 100 1 DOE
5 58.2 2 32 1 DOE
6 50 2.7 100 2 DOE
7 30 2.7 32 1 DOE
8 60 1.9 100 3 DOE
9 30 2 32 3 DOE
10 50 2.7 32 3 DOE
11 23.3 1.3 77.3 1 DOE
12 20 2.7 100 1 DOE
13 30 1 100 3 DOE
14 20 1.5 100 2 DOE
15 42.3 1.5 68.3 2 DOE
16 31.6 2.3 68.3 2.5 DOE
17 64.1 1.5 66 1 DOE
18 42.1 2.4 32 2 DOE
19 64.1 1.5 66 3 DOE
20 60 1.9 100 1 DOE
21 30 2 32 3 DOE
22 20 2.7 100 1 DOE
23 50 2.7 32 3 DOE
24 20 1.5 100 2 DOE
25 30 1 100 3 DOE
26 20 1.5 100 3 Thermocouple
27 50 2.7 100 3 Thermocouple
28 30 2 32 3 Thermocouple
29 50 2.7 32 3 Thermocouple
30 50 2.7 100 0.5 Burn-off investigation
31 50 2.7 100 1 Burn-off investigation
32 50 2.7 100 3 Burn-off investigation
33 50 2.7 32 0.5 Burn-off investigation
34 50 2.7 32 1 Burn-off investigation
35 50 2.7 32 3 Burn-off investigation
36 20 1.5 100 0.5 Burn-off investigation
37 20 1.5 100 1 Burn-off investigation
38 20 1.5 100 3 Burn-off investigation
39 30 2 32 0.5 Burn-off investigation
40 30 2 32 1 Burn-off investigation
41 30 2 32 3 Burn-off investigation
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this paper, see Fig. 3(a) and Table 1. Therefore, to be pragmatic, a
2D modelling approach was used for the 16 conditions required
for the DOE analysis. Consequently assumptions had to be made,
like neglecting the material expulsion perpendicular to the direc-
tion of oscillation. The 2D models were developed with the finite
element analysis (FEA) software DEFORM.
2.2.1. Thermal model
Previous work [6] by the authors demonstrated how 2D models

can be used to estimate the heating during phase 1 for the workpiec-
es displayed in Fig. 3(a). The 2D model used is displayed in Fig. 5(a).
The tooling extended to within 5 mm of the interface as occurred in
the experiments. A uniform mesh size of 0.5 mm was used across
the model. Temperature dependent thermal conductivity, specific
heat and emissivity data from the DEFORM software’s library were
used. The convective heat transfer coefficient was assumed [1] to be
10 W/(m2 K); and the conductive heat transfer coefficient with the
tooling was assumed [1] to be of 10,000 W/(m2 K). The temperature
of the environment was assumed to be 20 �C.

A uniform heat flux (Q) was applied across most of the work-
piece interface which was linearly reduced to 50% of this value
from an amplitude (A) away from the edge as shown in Fig. 5.
The reduction at the edges was due to the sinusoidal movement
of the workpieces – the point at the corner was only in contact
with the other workpiece 50% of the time. The heat flux was deter-
mined by dividing the process input combination dependent phase
1 power input – see Eq. (2) – by the average in-contact interface
area of the workpieces.

Average phase 1 power ¼ �18:26366þ 0:32678 � f

þ 9:27832 � Aþ 0:061476 � Fa

þ 0:087638 � f � A� 4:21790

� 10�4 � f � Fa � 2:33759 � 10�3

� f 2 � 1:93524 � A2 ð2Þ

where: A is the amplitude, f is the frequency and Fa is the applied
force.

The interface temperature at the end of phase 1, irrespective of
the process inputs, has been shown to reach approximately
1000 �C [6], consequently, the heat flux was applied until the ele-
ments at the interface had achieved this temperature. The generic
appearance of the thermal profile at the end of phase 1 is shown in
Fig. 5(b).
2.2.2. Plastic flow model
The 2D analysis assumed that no material flow occurred per-

pendicularly to the direction of oscillation. As such, a 2D plane
strain condition was used so that the models represented a slice
at the centre of the workpieces in Fig. 3(a), with the direction of
oscillation being in-plane. As shown in Fig. 6(a), the 2D plastic flow
models were specifically designed to focus on the weld interface of



Fig. 4. Experimental responses showing: (a) the weld centre zone (WCZ), the
thermo-mechanically affected zone (TMAZ), and the parent material (Parent) [6];
and (b) the flash thickness at the point of exit.

Fig. 6. 2D modelling development showing: (a) plastic flow model setup, (b) plastic
flow model with a thermal profile mapped on.
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the workpieces to reduce the computational time. The oscillation
movement and the applied force were provided by the lower and
upper dies, respectively. The thermal profiles at the end of phase
Fig. 5. Developed 2D thermal model showing: (a) the heat flux approach used [6] and
1 from the thermal models were mapped onto the plastic flow
models, as illustrated in Fig. 6(b).

A study on the effects of the mesh element size was performed.
It was found that the plastic deformation results were independent
of the mesh size for an average element size below 0.13 mm. Due
to most of the plastic deformation and heat generation occurring at
the interface, most of the mesh elements – with a width of
0.13 mm – were placed in a 4 mm band around the interface, as
shown in Fig. 6(a). The relative element size was increased outside
of the 4 mm band.

The responses obtained from the modelling will only be as
accurate as the input data. As such, the material flow stress data
used in this work was the same as that reported by Turner et al.
[1]. In summary, the material flow stresses were obtained from
stress and strain curves for temperatures, strains and strain rates
up to 1500 �C, 4 and 1000 s�1, respectively. The values for the
thermal conductivity, specific heat capacity, emissivity, and heat
(b) an illustration of the generic thermal profile generated at the end of phase 1.



188 A.R. McAndrew et al. / Materials and Design 66 (2015) 183–195
transfer to the tooling and environment were identical to the val-
ues used for the thermal models.

Each model was given a time-step so that it approximately trav-
elled a third of the interface mesh element thickness per iteration.
The thermal and mechanical aspects of the analysis were coupled
and, in accordance with the literature [9,19,20], 90% of the
mechanical energy used to deform the material was estimated to
be converted into heat. A re-mesh was initiated every 0.1 s for all
cases.

Several responses were recorded from the models. To under-
stand the expulsion of the surface contaminants point tracking
was used at the interface, with a 1 mm gap between each point,
as shown in Fig. 7(a). The models were then run to the desired
burn-off and the amount of points that remained recorded. This
allowed for an understanding of which combination of process
inputs were required to ensure complete expulsion of the point
tracking into the flash, as shown in Fig. 7(b). Other responses inves-
tigated included: the steady-state burn-off rate, which was calcu-
lated by determining the gradient of the line when the burn-off
rate is approximately constant; the peak interface temperature;
strain rate; extent of the region being strained (TMAZ); the average
power input and interface force generated during phase 3; and the
flash thickness at the point of exit.

2.3. Regression analysis

An ‘‘analysis of variance’’ (ANOVA) was conducted using Design
Expert V.7. This identified which inputs and input interactions
were statistically important for mathematically describing the pro-
cess outputs. The statistically insignificant factors were then
removed from the regression analysis equations. This took place
for both the results from the FEA and the physical experiments.
Several statistical criteria were considered when reducing the fac-
tors. These are listed below, and the reader is referred to the cited
text for further explanation [33]:

� R-Squared (R2): The percentage of variation in the data
explained by the regression model.
� Adjusted R-Squared (Adj R2): As for R2 but adjusted for the

number of factors in the model.
� Predicted R-Squared (Prd R2): A measure of the percentage of

variation for new data explained by the model.
� Adequate Precision (Ad. Pr): This is the signal to noise ratio

and compares the range of the predicted values at the design
points to the average prediction error.
Fig. 7. Recording the FEA responses: (a) interface point tracking and (b) point
tracking removed from the interface into the flash (note that there will always be a
null flow point at the centre).
� P-Values (P-V): This helps the user determine which input fac-
tors are of significance. The smaller the value the better, with
values equal to or lower than 0.05 being statistically significant.
The overall value for the equation describes how significant it is.

3. Results and discussion

3.1. Regression analysis

The results from the statistical tests performed on the final
regression analysis equations for the FEA and experiments are dis-
played in Table 2, where Av. and EXP represent average and exper-
iment, respectively. Much of the variability within the results is
accounted for due to many of the values being close to 100%. These
results are presented first as the following discussions integrate
the FEA and experimental results.

The equations for the completed regression analysis are listed
below:

Burn� off rateðFEAÞ ¼ �1:36198� 0:032022 � f þ 1:30674 � A

� 1:90035 � 10�3 � Fa þ 0:028506 � f � Aþ 3:87983 � 10�4 � f � Fa

þ 2:69099 � 10�3 � A � Fa � 0:32656 � A2 ð3Þ
Burn� off rateðEXPÞ ¼ 0:69581� 0:042711 � f þ 0:039751 � A

� 6:79114 � 10�3 � Fa þ 0:036051 � f � A

þ 4:66901 � 10�4 � f � Fa ð4Þ
TMAZ thicknessðFEAÞ ¼ 3:06495þ 1:17408 � A

� 0:040652 � Fa � 0:29568 � A2 þ 2:20636 � 10�4 � F2
a ð5Þ

Flash thicknessðFEAÞ ¼ 5:56032� 3:84187 � 10�3 � f

� 0:094892 � A� 0:049387 � Fa þ 2:80758 � 10�4 � F2
a ð6Þ

Interface temperatureðFEAÞ ¼ 676:29677þ 6:21345 � f

þ 301:4961 � A� 0:40508 � Fa � 6:71761 � 10�3 � f � Fa

� 0:57031 � A � Fa � 0:02614 � f 2 � 46:9745 � A2

þ 7:40249 � 10�3 � F2
a ð7Þ

Interface strainrateðFEAÞ ¼ 53:01137� 2:18777 � f
� 56:11051 � A� 0:34278 � Fa þ 5:55938 � f � A

þ 0:04545 � f � Fa þ 0:99927 � A � Fa � 0:015 � F2
a ð8Þ

Remaining point trackingðFEAÞ ¼ 31:54378� 0:48038 � f

þ 0:088584 � A� 0:061352 � Fa � 13:51208 � Bo

þ 0:043083 � f � Aþ 6:99114 � 10�4 � f � Fa � 0:019211 � A � Fa

þ 0:022378 � Fa � Bo þ 3:75413 � 10�3 � f 2 þ 2:10029 � B2
o ð9Þ

Av:phase 3 interface forceðFEAÞ ¼ 36:63998� 0:12187 � f

� 16:69319 � Aþ 0:29955 � Fa þ 3:81874 � A2

� 1:63274 � 10�3 � F2
a ð10Þ

Av:phase 3 interface forceðEXPÞ ¼ 55:71070� 0:63561 � f

� 6:22698 � A� 0:016212 � Fa þ 0:10859 � f � A

þ 0:032661 � A � Fa þ 5:10434 � 10�3 � f 2 ð11Þ
Av:phase 3 powerðFEAÞ ¼ �5:04395� 3:26455 � 10�3 � f

� 0:050195 � Aþ 0:16786 � Fa þ 0:095837 � f � A

� 9:8577 � 10�4 � F2
a ð12Þ

Av:phase 3 powerðEXPÞ ¼ 6:21627� 0:083060 � f

� 2:22581 � A� 0:057055 � Fa þ 0:16352 � f � A

þ 6:46109 � 10�4 � f � Fa þ 0:025004 � A � Fa ð13Þ

where: A is the amplitude, f the frequency, Fa the applied force, and
Bo the burn-off.



Table 2
Statistical tests performed on the final regression analysis models.

Process output R2 (%) Adj. R2 (%) Prd. R2 (%) Ad. Pr. P-V

Burn-off rate (FEA) 99.8 99.7 99.6 125.9 <0.0001
Burn-off rate (EXP) 93.4 91.7 88.4 23.4 <0.0001
TMAZ thickness (FEA) 92.1 90.5 87.8 19.2 <0.0001
Flash thickness (FEA) 94.8 93.8 91.9 24.1 <0.0001
Interface temperature (FEA) 99.8 99.6 99.3 88.1 <0.0001
Interface strain rate (FEA) 99.7 99.6 99.3 90.3 <0.0001
Remaining point tracking (FEA) 99.1 98.4 97.0 36.8 <0.0001
Av. phase 3 interface force (FEA) 96.0 95.0 93.8 30.8 <0.0001
Av. phase 3 interface force (EXP) 89.9 86.6 82.0 16.2 <0.0001
Av. phase 3 power input (FEA) 98.2 97.7 96.7 41.4 <0.0001
Av. phase 3 power input (EXP) 99.6 99.5 99.2 89.6 <0.0001
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With the exception of the point tracking evolution described by
Eq. (9), the burn-off, Bo, had no effect on any of the responses. This
is in good agreement with other authors who have shown that
once Ti–6Al–4V is in the steady-state phase (phase 3) the plastic
deformations [1,4,34] and thermal profiles [1,9,15] are indepen-
dent of the burn-off.

All of the regression analysis plots from this point onward –
unless otherwise stated – display the results from the mathemati-
cal equations (Eqs. (3)–(13)) as opposed to the actual values
recorded from the models and experimental welds. This allowed
for a greater understanding of the relationships between the inputs
and outputs. Experimental and modelling results are compared
where possible.

3.1.1. Mechanisms behind flash formation
The regression analysis demonstrated that it was acceptable to

consider the frequency and amplitude of oscillation as a combined
single input term called the average rubbing velocity, vr, which
Addison [3] defined as:

v r ¼ 4 � A � f ð14Þ

Varying the frequency or amplitude while keeping the average rub-
bing velocity constant had relatively little effect on the outputs
(although this observation may only be applicable to Ti–6Al–4V
for the frequency and amplitude range investigated). To illustrate
this, the steady state burn-off rates determined from the models
and experiments are plotted as a function of the frequency and
average rubbing velocity in Fig. 8(a). Therefore all subsequent
Fig. 8. Regression analysis for the FEA and experimental steady-state burn-off rate: (a)
100 kN, and (b) as a function of the average rubbing velocity and applied force.
regression analysis plots are displayed as a function of the average
rubbing velocity.

The FEA demonstrated how the flash was generated in the
direction of oscillation. When the amplitude was at maximum dis-
placement the in-contact surface area was decreased. This caused a
pressure increase, resulting in the cooler material being plunged
further into the highly viscous material. As the workpieces were
brought back together the cooler material ploughed the viscous
material from the interface generating the flash. Fig. 8(b) shows
how the burn-off rate (flash formation rate) was affected by the
combination of rubbing velocity and applied force used – it
increased with both. This phenomenon was due to the increased
rubbing velocity causing a faster rate of ploughing; and the
increased force causing the cooler material to be plunged even fur-
ther into the viscous material, resulting in a greater amount of
material being ploughed from the interface with each oscillatory
cycle, thus increasing the burn-off rate.

As shown in Fig. 8, the models under-predicted the burn-off rate.
Turner et al. [1] noticed that there are two mechanisms for expelling
the viscous material. The first is the effect of the oscillatory motion
pushing and dragging the material out of the weld in the direction of
oscillation; the second is the applied force extruding the material in
the direction perpendicular to oscillation. The mechanism that
dominates depends on the process inputs used. 2D models cannot
account for the material being expelled perpendicular to oscillation
thus explaining the observed under-prediction. The difference
between the experimental and modelled burn-off rates is greatest
for low applied forces. This may indicate that under lower applied
as a function of the frequency and average rubbing velocity for an applied force of



Fig. 9. Regression analysis results for the FEA and experiments for the: (a) peak interface temperature, (b) peak interface strain rate, (c) average interface force during phase 3,
and (d) average power input during phase 3.
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forces a greater percentage of the material is extruded perpendicu-
lar to the direction of oscillation. 3D modelling may provide better
insight into this phenomenon.
3.1.2. Energy usage, thermal fields and microstructure
The results from the regression analysis for the peak interface

temperature, peak interface strain rate, average interface force
generated during phase 3 and the average power input generated
during phase 3 are displayed in Fig. 9(a)–(d), respectively.

The average interface force generated over a phase was rela-
tively insensitive to the rubbing velocity (see Fig. 9(c)). This can
be explained by the effects of the temperature and strain rate on
the flow stress. The interface strain rate increased with the average
rubbing velocity (see Fig. 9(b)), which increased the required flow
stress [1,35]. However, the higher rubbing velocities also generated
a greater heat input (see Fig. 9(d)), which due to the relatively low
thermal conductivity of titanium alloys [36] concentrated the heat
close to the weld interface. The concentrated heat increased the
interface temperature (see Fig. 9(a)) thus reducing the required
flow stress [1,35,37]. The net result appears to be a cancellation
of the two effects.

As shown in Fig. 9(a), the interface temperature increases as the
applied force is decreased. This observation was also made by
Romero et al. [38] and Turner et al. [11]. This phenomenon can
be explained by the relationship between the power input and
the burn-off rate. For a comparable rubbing velocity, a reduction
in the force resulted in the burn-off rate being reduced by a greater
percentage than the power input, as can be seen by comparing
Figs. 8(b) and 9(d). Although less heat went into the weld it was
not expelled as fast. This increased the time the heat had to con-
duct back from the interface, thus increasing the size of the band
of heated material – see the 540 mm/s profiles in Fig. 10(a). Conse-
quently, the material farther back from the interface was much
hotter with lower applied forces. When this hotter material
reached the interface its heat combined with the heat generated
during the oscillatory motion thus producing a higher interface
temperature.

The higher interface temperature would explain why the aver-
age interface force generated over a phase decreased as the applied



Fig. 10. Thermal histories from the FEA and experiments showing: (a) the effects of different average rubbing velocities, Vr, and applied forces, Fa, on the generated FEA
thermal profiles during phase 3; (b) a comparison of the thermal histories between a model and an experiment for the different phases for a frequency, amplitude, applied
force and burn-off of 20 Hz, 1.5 mm, 100 kN and 3 mm, respectively (note the distances in the key represent how far back from the interface the recorded points were at the
beginning of the process); and (c) FEA boundary temperature between flash formation and negligible material flow.
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force was reduced (see Fig. 9(c)), the interface was hotter thus
requiring a lower force to maintain oscillatory motion due to the
reduction in the required flow stress [1,35,37]. The lower interface
force would also explain why the peak strain rate and power input
to maintain the steady-state condition were reduced with lower
applied forces, as shown in Fig. 9(b) and (d).

The models under-predicted the average interface forces and
power inputs, as shown in Fig. 9(c) and (d). This was probably
due to two main factors: First, the models did not account for
the heat that was expelled into the flash in the direction perpendic-
ular to oscillation. This may have resulted in the modelled weld
being comparably hotter than the experimental one. Consequently
the models may have had a higher interface temperature, thus
requiring a lower force to maintain oscillatory motion; the lower
force would have also reduced the power input. The second factor
was due to the difference between the flow stress values of the
experimental weld and the modelled weld.

As shown in Fig. 10(b), there is a good match between the purely
thermal models and thermocouple recordings for the heating dur-
ing the initial phase (phase 1) of the process. The reason there
was disagreement between the thermocouple recordings and the
plastic flow models (phases 2 and 3), particularly for the thermo-
couples initially closest to the interface, was probably due to the
same problem encountered by Vairis and Frost [10]. The viscous
plasticised material entered the thermocouple hole and pushed
the thermocouple back from the interface causing it to record a
lower value at an unknown distance farther back. This would
explain why there was good initial agreement and then a drop off
in the thermocouple recording. This problem was observed for all
comparisons between the models and thermocouple trials. As



Fig. 11. Regression analysis results for the FEA for the: (a) combination of process inputs required to completely expel the point tracking into the flash, (b) TMAZ thickness,
and (c) flash thickness. Note that the experimental flash and TMAZ thicknesses were obtained from the experiments rather than being outputs from a regression model.
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previously discussed, there also could have been extra heat in the
plastic models due to no flash being expelled perpendicular to the
direction of oscillation. This would explain why the peak thermo-
couple recordings were lower than those of the models. Despite
the differences between the models’ temperature output and ther-
mocouple recordings during phases 2 and 3, the modelling results
are believed to be reasonably accurate due to the weld line temper-
atures observed in this work (see Fig. 9(a)) being in good agreement
with other authors for Ti–6Al–4V, i.e. between 1000 �C and 1300 �C
[1,11,12,14,20].

The experimental Ti–6Al–4V workpiece material experienced
significant microstructural changes around the interface region.
As and shown in Fig. 4(a) and reported previously [6], regardless
of the process inputs used, the macrostructures of the Ti–6Al–4V
linear friction welds were similar in appearance in the fact that
they had several distinct zones – a weld centre zone (WCZ), a
thermo-mechanically affected zone (TMAZ) and the parent mate-
rial. In agreement with Romero et al. [38] and Li et al. [39] it was
difficult to detect a purely heat affected zone (HAZ). The micro-
structural features of the WCZ and TMAZ are summarised below:
� Weld centre zone. The temperature measurements from the
models (see Fig. 9(a)) indicated that the WCZ exceeded the
beta-transus temperature. The large strains and strain rates
in the WCZ (see Fig. 9(b)) induced dynamic recrystallisation
of the beta-phase [40,41]. The body-centred-cubic (BCC)
beta-phase microstructure [36,42] present at the WCZ during
processing had more slip-systems than the hexagonal-close-
packed (HCP) alpha-phase [43] and required a lower activation
energy to initiate material flow [44,45]. This would explain
why the commencement of material flow during the LFW of
Ti–6Al–4V is associated with the beta-transus temperature,
as previously reported [6]. Depending on the rate of post
oscillatory motion cooling [46] the beta-phase at the WCZ
transformed into either a Widmanstatten or Martensitic
microstructure [6].
� Thermo-mechanically affected zone. The material in this region

was affected by the heat and deformed mechanically but there
was little evidence that the TMAZ experienced temperatures
equal to or greater than the beta-transus or experienced
dynamic recrystallization; this was due to the original



Fig. 12. (a) High magnification of the contaminants present at the weld interface in
weld number 11 [6]; and surface contaminant expulsion for an average rubbing
velocity of 540 mm/s and an applied force of 100 kN for a burn-off of: (b) 0.5 mm
(experiment) and (c) associated FEA, (d) 1 mm (experiment) and (e) associated FEA,
(f) 3 mm (experiment) and (g) associated FEA. Note that the null flow point was
removed for clarity from (e) and (g).
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alpha-grains of the parent material being present. In agreement
with the literature [26,47] many of the TMAZ grains were
deformed, elongated and re-orientated in the direction of
oscillation.

To obtain a greater insight into the effects of the process inputs
on the microstructural evolution during processing, future model-
ling work could consider combining the parametric approach used
in this work with the general methodology for predicting weld
microstructural changes reported by Grujicic et al. [23].

Worthy of note, the modelling work in this paper showed that
the boundary temperature between the flash formation and negli-
gible material flow was 970 �C (±20 �C), approximately corre-
sponding to the beta-transus temperature, as shown in Fig. 10(c).

3.1.3. Surface contaminant removal
The results from the regression analysis for the combination of

process inputs required to completely expel the point tracking into
the flash, the TMAZ thickness and the flash thickness are displayed
in Fig. 11(a)–(c), respectively. Note that: the burn-off values pre-
sented in Fig. 11(a) are the minimum values – according to Eq.
(9) – required to ensure fewer than two ‘‘tracked points’’ remained
at the interface, i.e. the minimum burn-off required so that only
the null flow point was present; and the experimental flash and
TMAZ thicknesses were physical experimental recordings rather
than values estimated by regression analysis equations.

As shown in Fig. 11(a), when the applied force is increased the
required burn-off to completely expel the point tracking into the
flash decreases. This was due to the influence of the applied force
on the generated thermal profiles. As discussed in Section 3.1.2,
for the rubbing velocity range investigated the higher forces gener-
ated a thinner band of highly heated viscous material (greater than
970 �C). As the size of the band of highly heated material was
reduced so was the amount of material required to be expelled
along with the point tracking, thus reducing the required burn-
off. Despite the large influence the rubbing velocity had on the gra-
dient of the thermal profiles, for a comparable applied force a
change in the rubbing velocity had relatively little effect on the
extent of the band of material above 970 �C, as shown in
Fig. 10(a). Consequently, the rubbing velocity had relatively little
effect on the required burn-off to expel the point tracking for the
conditions evaluated in this work.

As shown in Fig. 12, there is good agreement between the
expulsion of the surface contaminants (the dark clusters along
the interface as shown in Fig. 12(a), (b) and (d)) in the experimen-
tal welds and the point tracking results from the FEA; both show
that the contaminants and point tracking are increasingly expelled
toward the edges of the workpieces as more burn-off occurs. For
the experiments it became increasingly difficult to optically
observe the surface contaminants as the burn-off increased. This
was to be expected as the contaminants would have been expelled
into the flash and/or heavily strained, thus dispersing them thinly
across the weld.

Although there was good agreement between the experiments
and FEA for the contaminant evolution during phases 2 and 3, fur-
ther justification of the assumption that point tracking can effec-
tively represent the contaminants is required. Contaminants may
affect the constitutive behaviour of the viscous interface layer,
however due to their small size (see Fig. 12(a)) relative to the
extent of the flowing material (see Fig. 11(b and c)) their effect is
likely to be limited. To justify this view the LFW machine output
data was interrogated for the DOE welds that had experienced
3 mm of burn-off (see Table 1). The average interface force
between 0 mm and 1 mm of burn-off (where a heavy contaminant
presence was expected, see Fig. 12 and previous work [6]) was
compared to the average interface force between 1.5 mm and
3 mm (where there was a negligible contaminant presence, see
Fig. 12(f)). The analyses showed that the average interface force
between the two burn-off regimes typically varied by 3.8% – a min-
imal difference. The slightly larger forces at the lower burn-off val-
ues were more likely to be due to the inclusion of the transition
phase (phase 2) than the contaminants – the lower temperature
viscous material in the transition phase typically requires a larger
force to maintain oscillatory motion [4,6,31]. Therefore the surface
contaminants are likely to have had a negligible effect on the over-
all constitutive behaviour of the viscous interface layer. Conse-
quently FEA used in conjunction with point tracking offers a
pragmatic method for understanding the mechanisms behind sur-
face contaminant removal during phases 2 and 3.

Furthermore, to investigate the effects of the contaminants dur-
ing phase 1 on the experimental workpieces the authors compared
the average force histories between pre-weld cleaned and non-pre-
weld cleaned welds that were run at the same frequency, ampli-
tude and applied force, i.e. weld 6 and weld 30; weld 10 and weld
33; weld 14 and weld 36; and weld 9 and 39 – as detailed in
Table 1. The pre-weld cleaned workpieces should have had far less
contaminants. The analyses showed no noticeable difference
between the average force histories during phase 1; therefore the
impact of contaminants during phase 1 also appeared to be small.

Due to a thinner band of highly heated material being produced
in welds with higher applied forces the thickness of the flash and the
TMAZ are reduced under these conditions, as shown in Fig. 11(b)
and (c). An increase of the rubbing velocity had minimal effect on
these values. The trends of the flash and TMAZ thickness were cap-
tured by the models; however the exact values did not match with
the experimental welds. The extra heat in the models (as previously
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discussed) and the difference between the experimental and model-
ling material flow stress data may have contributed to the discrep-
ancies. The experimental welds had also experienced extra material
expulsion due to the forging force during phase 4, which may have
reduced the values. In addition for the TMAZ thickness results: for
the models, the distance between the points of negligible strain
either side of the interface were recorded, while in the experimental
welds the final observable TMAZ thickness was recorded, which
may not have coincided with negligible strain.
4. Conclusions

The following conclusions can be made from this work:

(1) The 2D models gave an insight into the process fundamen-
tals for the LFW of Ti–6Al–4V workpieces. Although the 2D
models assumed no material expulsion perpendicularly to
the direction of oscillation they still managed to capture
the experimental trends.

(2) The measurements from the finite element analysis and the
experimental microstructural observations suggest that the
weld interface exceeded the beta-transus temperature and
experienced dynamic recrystallisation.

(3) The finite element analysis demonstrated that the boundary
temperature between the rapid flash formation and negligi-
ble material flow was approximately 970 �C.

(4) Finite element analysis used in conjunction with point track-
ing was an effective way to evaluate surface contaminant
removal.

(5) The surface contaminants were increasingly expelled from
the weld interface as the burn-off was increased.

(6) An increase of the applied force increased the steady-state
burn-off rate, interface strain rate, power input and interface
force; whilst decreasing the interface temperature, flash
thickness, TMAZ thickness, and the overall burn-off required
to expel the point tracking/surface contaminants.

(7) An increase of the average rubbing velocity increased the
interface temperature, strain rate, steady-state burn-off rate
and power input; whilst having relatively little influence on
the flash thickness, TMAZ thickness and the overall burn-off
required to expel the point tracking/surface contaminants.

(8) For the process input combinations investigated it may be
advantageous to produce Ti–6Al–4V linear friction welds
using higher applied forces. This is because the material con-
sumption to remove the surface contaminants will be
reduced, thus increasing the safety factor for a set burn-off
value.
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